

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 The Shesmu Development Team is dedicated to providing a harassment-free experience for everyone. We do not tolerate harassment of participants in any form.

This code of conduct applies to all The Shesmu Development Team spaces, including GitHub, and Gitter, both online and off. Anyone who violates this code of conduct may be sanctioned or expelled from these spaces at the discretion of the OICR GSI management.

Some The Shesmu Development Team spaces may have additional rules in place, which will be made clearly available to participants. Participants are responsible for knowing and abiding by these rules.

Harassment includes:

	Offensive comments related to gender, gender identity and expression, sexual orientation, disability, mental illness, neuro(a)typicality, physical appearance, body size, age, race, or religion.

	Unwelcome comments regarding a person’s lifestyle choices and practices, including those related to food, health, parenting, drugs, and employment.

	Deliberate misgendering or use of ‘dead’ or rejected names.

	Gratuitous or off-topic sexual images or behaviour in spaces where they’re not appropriate.

	Physical contact and simulated physical contact (e.g., textual descriptions like “hug” or “backrub”) without consent or after a request to stop.

	Threats of violence.

	Incitement of violence towards any individual, including encouraging a person to commit suicide or to engage in self-harm.

	Deliberate intimidation.

	Stalking or following.

	Harassing photography or recording, including logging online activity for harassment purposes.

	Sustained disruption of discussion.

	Unwelcome sexual attention.

	Pattern of inappropriate social contact, such as requesting/assuming inappropriate levels of intimacy with others

	Continued one-on-one communication after requests to cease.

	Deliberate “outing” of any aspect of a person’s identity without their consent except as necessary to protect vulnerable people from intentional abuse.

	Publication of non-harassing private communication.

The Shesmu Development Team prioritizes marginalized people’s safety over privileged people’s comfort. OICR GSI management reserves the right not to act on complaints regarding:

	‘Reverse’ -isms, including ‘reverse racism,’ ‘reverse sexism,’ and ‘cisphobia’

	Reasonable communication of boundaries, such as “leave me alone,” “go away,” or “I’m not discussing this with you.”

	Communicating in a ‘tone’ you don’t find congenial

	Criticizing racist, sexist, cissexist, or otherwise oppressive behavior or assumptions

Reporting

If you are being harassed by a member of The Shesmu Development Team, notice that someone else is being harassed, or have any other concerns, please contact the OICR GSI management. If the person who is harassing you is on the team, they will recuse themselves from handling your incident. We will respond as promptly as we can.

This code of conduct applies to The Shesmu Development Team spaces, but if you are being harassed by a member of The Shesmu Development Team outside our spaces, we still want to know about it. We will take all good-faith reports of harassment by the Shesmu Development Team seriously. This includes harassment outside our spaces and harassment that took place at any point in time. The abuse team reserves the right to exclude people from The Shesmu Development Team based on their past behavior, including behavior outside The Shesmu Development Team spaces and behavior towards people who are not in The Shesmu Development Team.

In order to protect volunteers from abuse and burnout, we reserve the right to reject any report we believe to have been made in bad faith. Reports intended to silence legitimate criticism may be deleted without response.

We will respect confidentiality requests for the purpose of protecting victims of abuse. At our discretion, we may publicly name a person about whom we’ve received harassment complaints, or privately warn third parties about them, if we believe that doing so will increase the safety of The Shesmu Development Team members or the general public. We will not name harassment victims without their affirmative consent.

Consequences

Participants asked to stop any harassing behavior are expected to comply immediately.

If a participant engages in harassing behavior, OICR GSI management may take any action they deem appropriate, up to and including expulsion from all The Shesmu Development Team spaces and identification of the participant as a harasser to other The Shesmu Development Team members or the general public.

License and attribution

This policy is licensed under the Creative Commons Zero license [http://creativecommons.org/publicdomain/zero/1.0/] . It is public domain, no credit and no open licensing of your version is required.

If you would like to optionally attribute it, you could use the below text and link to Community anti-harassment on Geek Feminism Wikia [http://geekfeminism.wikia.com/wiki/Community_anti-harassment].

This anti-harassment policy is based on the example policy from the Geek Feminism wiki, created by the Geek Feminism community.

The policy is based on the Conference anti-harassment/Policy [https://geekfeminism.wikia.org/wiki/Conference_anti-harassment/Policy], and is the work of Annalee Flower Horne with assistance from Valerie Aurora, Alex Skud Bayley, Tim Chevalier, and Mary Gardiner.

How to contribute

We’re glad you’re interested in contributing to the development of Shesmu and
are happy to collaborate. Please review this document to ensure that your work
fits well into the Shesmu code base.

Tickets

Create a ticket for your issue if one does not exist. As development of Shesmu
is mainly done at OICR currently, the ticket is usually on the internal OICR
JIRA, but a GitHub Issue is also acceptable. This ensures that we have a place
to discuss the changes before the work is done. A ticket is not necessary if
the change is trivial, such as correcting a typo.

Branches

Create a feature branch. The branch should be based on the master branch
unless you have reason to do otherwise. The branch name should begin with the
issue number, and be followed by a brief hint of what it is about. e.g.,
#1234_fix_jira_action

Code Formatting

The project includes Google code formatter for Java that should be
automatically run on check-in using Maven. For JavaScript and TypeScript, we
use prettier [https://prettier.io/] manually. Please ensure that these are
used. This keeps the diff clean, so it is easier to review your changes.

Testing

We have several types of automated testing:

	Compiler tests – these tests make sure that olive language compiler produce the expected output (either success or error messages)

	Run with mvn clean install

	Tests are in shesmu-server/src/test/resources/compiler and shesmu-server/src/test/resources/compiler

	All new syntax changes require tests

	Fixes for bad bytecode generation require tests

	User interface tests

	Run with mvn clean install

	Tests are in shesmu-server/src/test/java/ca/on/oicr/gsi/UserInterfaceTest.java

	Miscellaneous tests

	Run with mvn clean install

	Tests are in shesmu-server/src/test/java/ca/on/oicr/gsi/

	Plugin tests

	Run with mvn clean install

Please make sure to add or update the relevant tests for your changes. Testing
plugins is difficult because they are often mostly integration code that has to
communicate with a external services. We accept any level of testing on plugins
as long as it is fast and delegate any plugin bugs to plugin authors.

Commits

	Make sure your commit contains a reference to the issue number. e.g.
Closes #1234 in the body Edit the Unreleased section in

	RELEASE_NOTES.md to detail any user-visible Changes or
Update Notes (Additional steps that must be taken when upgrading to the
Shesmu version containing your change)

Pull Requests

Changes should never be merged directly into master. Pull requests should be
made into the master branch for testing and review. All pull requests need
two reviewers. If you have suggestions, please select them when creating your
pull request, but the Shesmu developers may add additional developers or assign
someone else.

Merging

Once all of the tests are passing, and your pull request has received two
approvals, you are ready to merge. To keep a clean commit history please

	Merge your changes into one commit unless they are clearly separate changes.

	Rebase on the master branch so that your change appears after the changes
that were previously merged in the history.

To do this, on your system:

git fetch && git rebase -i origin/master

Then change any commits that have no semantic meaning to f fixup commits to
be absorbed into the previous commit. Finally, push the modified version to
your branch with:

git push -f

Please delete your feature branch after it is merged.

Plugins versus Core Infrastructure

Shesmu has two very different parts: the core Shesmu infrastructure (the server,
the compiler, and testing infrastructure) and plugins for integration with
other systems. We are happy to take on plugins for systems we do not use and
provide them with some maintenance and to include them in our release process
to make them as available as possible.

However, the core Shesmu team does not have the testing environment and
therefore cannot support every plugin contributed by the community. If you are
contributing a plugin, there is an expectation that you or your organisation
are committed to ongoing maintenance of that plugin and handling issues
associated with it. Plugins that become a maintenance burden for the core team
will be removed from the main repository.

If you wish to maintain a plugin in an external repository, we will happily add
links to core documentation for it.

Contributions to the core infrastructure will be maintained by the core
developers.

Changes to the Shesmu Language

Every change to the language itself is effectively permanent. We must be
conservative and sure that we aren’t making a change we will regret later or
something which is a large maintenance burden for minimal value. We also need
to make sure that changes do not impact existing users negatively. Expect slow
and cautious review of syntax changes.

Thank you for your contributions!

[image: _images/wordmark.svg] Shesmu Decision-Action Server

Shesmu is part of a bioinformatics workflow launching system. It does not do
workflow launching in the usual sense.

Shesmu acts as an intermediary between two systems: a database of analysis
provenance and a workflow scheduler. It scans the provenance system for a list
of which files have been produced and then uses decision-action blocks called
olives to decide what “actions” should be run. Actions can be launching
workflows or filing tickets.

It can filter and aggregate the provenance information to decide what actions
to perform. Shesmu is designed to operate in a stateless way. When the server
starts up, it creates a list of all actions that need to be performed, then it
issues commands to the workflow launcher, which should politely recognise which
commands have been previously executed and only launch the new tasks.

Plugins are used to communicate with other systems to perform the real
work–Shesmu is an empty vessel that requires plugins to find data and take
action. The olives are supplied by a script that is compiled and run over all
the provenance data.

Documentation Quick Reference

	Olive Tutorial

	Running the Demo

	Olive Language Reference

	Complex Olive Cookbook

	The Mandatory Guide to Optional Values

	Algebraic Values without Algebra

	Training Guide for Operators

	Writing Guided Meditations

	Static Actions

	Shesmu Glossary

	Shesmu FAQ

	Ask your doctor if Shesmu is right for you

	Plugin Implementation Guide

	Compiler Hacking

Dependencies

What Shesmu requires will depend on which plugins you enable. Plugins can be
disabled by passing -pl "!plugin-foo" to disable a plugin when calling mvn
commands.

Build dependencies:

	Java 17 or later

	Maven 3.8 or later

	NPM

	Docker (optional) for container builds

Optional runtime dependencies:

	Prometheus (strongly recommended)

	Prometheus Alert Manager (required for Olive Alert to work)

	JIRA

	GitHub

	GitHub, GitLabs, or BitBucket for storing configuration files (recommended)

Running an Instance

Maybe you want to first check if Shesmu is right for you
and figure out what you would need for an installation.

Setting up Shesmu involves collecting all the necessary bits and putting them
into one place. It will discover most of the configuration from there.

To bring up a test instance, first create /srv/shesmu. In this directory, the
other configuration files will be placed (see below). Shesmu can read many
.shesmu scripts containing multiple olives from /srv/shesmu. If you don’t
know how to write them, have a look at the tutorial and the
language guide.

An unconfigured Shesmu server is pretty boring. Try the instructions for
running a demo server to bring up a server with a set of
demonstration olives.

Docker Setup

You can build and run the container with:

docker build -t shesmu:latest .

Which will build all of the plugins available. Then run with:

docker run -p 8081:8081 \
 --mount type=bind,source=/srv/shesmu,target=/srv/shesmu \
 shesmu:latest

Shesmu’s Dockerfile also supports caching of dependency fetching through
the use of Docker’s BuildKit [https://docs.docker.com/build/buildkit/].

To enable this, add the following to your /etc/docker/daemon.json config:

{
 "features": {
 "buildkit" : true
 }
}

Local Setup

Now, compile the main server using Maven 3.5 with Java 8:

mvn install

This will create shesmu-server/target/shesmu.jar. If you require any
additional plugins (described below), compile them and collect all the JARs in
a directory on your server in /srv/shesmu or a path of your choosing.

The configuration for Shesmu is kept in a directory and will be automatically
updated if it changes. This makes it easy to store the configuration in git and
deploy automatically.

On a Linux server, create a systemd configuration in /lib/systemd/system/shesmu.service as follows:

[Unit]
Description=Shesmu decision-action server

[Service]
Environment=CLASSPATH=/srv/shesmu/*
Environment=SHESMU_DATA=/srv/shesmu
ExecStart=/usr/bin/java ca.on.oicr.gsi.shesmu.Server
KillMode=process

[Install]
WantedBy=multi-user.target

If your Shesmu server cannot determine it’s own URL (it attempts to use the
FQDN of the local system), in the [Unit] section, add:

Environment=LOCAL_URL=http://shesmu.myinstitute.org:8081/

Start the server using:

sudo systemctl daemon-reload
sudo systemctl enable shesmu
sudo systemctl start shesmu

Once running, the status page of the server on port :8081 will display all
the configuration read. The Definitions page will show all the actions and
lookups available to the script and the provenance variables and their types.

To start doing something, write some olives. A description for olives is found
in the tutorial.

Static Actions

Due to the imperfect nature of reality, it might be useful to launch bespoke
actions not defined by olives. To do this, create a JSON file that ends in
.actnow containing a list of JSON objects with two properties: name
containing the action name and parameters containing an object with all the
parameters to the action in the JSON-equivalent representation of the
appropriate Shesmu type.

Shesmu will add these actions to its queue and attempt to run them as if they
were produced by an olive.

Plugins

Shesmu is meant to be a pluggable system. The base system provides a few
plugins that might be useful, but it is likely that custom plugins are needed.
Please read the plugin implementation guide for
information about how to extend the system. The plugins available are:

	Cerberus

	Git and GitHub

	Guanyin reporting

	JIRA ticket management

	Loki loggin

	MongoDB

	Nabu file QC

	Pinery

	Prometheus Alert Manager

	Token Bucket Throttling

	Run Scanner

	SFTP servers

	Tab-separated files

	Víðarr

Once a plugin is configured, it can provide:

	actions: the launchable elements described in Run olives

	constants: fixed parameters external to the olive

	dumpers: when debugging Shesmu olives, it is possible to log all output passing through an olive to a dumper. Dumping to a non-existent dumper simply discards the debugging output.

	functions: data manipulation functions that can be used in the olives

	input formats: the data that olives can draw on using the Input declaration at the start of a file, or in Join or LeftJoin clauses

	signers: special variables that are computed based on the current row being processed in the olive

	source linker: once a Shesmu server is deployed, it can be useful to have links from the Shesmu dashboard to the original .shesmu sources, especially when they are stored in git or the like. A source linker knows how to convert a path on the local file system into a URL.

	throttlers: when Shesmu has actions to perform, it will perform them as as quickly as possible. It may be useful to throttle Shesmu based on external criteria.

To view what olives may use, from the main Shesmu status page, use the
Definition menu to view the available resources including documentation and
type information. The plugins may not be able to provide static documentation
since they may dynamically provide actions, constants, functions, or signers.

For many plugins, the filename will determine the name of things available to
the olives.

Built-In

Shesmu provides only a small handful of built-in services.

Actions

These actions are available on any instance:

	std::nothing action: an action that collects a string parameter and does nothing. This can be useful for debugging.

Constants

These constants are available on any instance:

	epoch constant: date at the zero UNIX time

	now constant: the current timestamp

Functions

These functions are available on any instance:

	std::boolean::parse Convert a string containing into a Boolean.

	std::date::to_millis: get the number of milliseconds since the UNIX epoch for this date.

	std::date::to_seconds: get the number of seconds since the UNIX epoch for this date.

	std::float::is_infinite: check if a floating-point number is infinite.

	std::float::is_nan: check if a floating-point number is not-a-number.

	std::float::parse Convert a string containing digits and a decimal point into an float.

	std::integer::parse Convert a string containing digits into an integer.

	std::json::array_from_dict: convert a dictionary to an array of arrays. If a dictionary has strings for keys, it will normally be encoded as a JSON object. For other key types, it will be encoded as a JSON array of two element arrays. This function forces conversion of a dictionary with string keys to the array-of-arrays JSON encoding. Shesmu will be able to convert either back to dictionary.

	std::json::object: create a JSON object from fields.

	std::json::parse Convert a string containing JSON data into a JSON value.

	std::path::change_prefix: allow rewriting path prefixes to undo directory symlinking.

	std::path::dir: Extracts all but the last elements in a path (i.e., the containing directory).

	std::path::file: extracts the last element in a path.

	std::path::normalize: Normalize a path (i.e., remove any ./ and ../ in the path).

	std::path::relativize: Creates a new path of relativize one path as if in the directory of the other.

	std::path::replace_home: Replace any path that starts with $HOME or ~ with the provided home directory.

	std::string::eq: Compares two strings ignoring case.

	std::string::lower: Convert a string to lower case.

	std::string::trim: Remove white space from a string.

	std::string::upper: Convert a string to upper case.

	std::url::decode: Convert a URL-encoded string back to a normal string.

	std::url::encode: Convert a string to a URL-encoded string (also escaping *, even though that is not standard).

	std::version_at_least: Checks whether the supplied version tuple is the same or greater than version numbers provided.

Note that paths can be joined with the + operator and strings can be joined using interpolation (e.g., "{x}{y}").

Input Formats

These input formats are available on any instance:

	shesmu input format: information about the actions current running inside Shesmu

Signatures

These signatures are available on any instance:

	std::json::signature signer: all used signable variables and their values as a JSON object

	std::signature::sha1 signer: a SHA1 hash of all the used signable variables and their values

	std::signature::count signer: the number of all the used signable variables

	std::signature::names signer: the names of all the used signable variables

Constants from JSON

Simple boolean, integer, strings, and sets of the former can be stored as
simple constants in JSON files. Create a JSON file ending in .constants as
follows:

{
 "life_the_universe_and_everything": 42
}

This will provide the constant life_the_universe_and_everything to olives.
Updating the file will update the value seen by the olives if the type is the
same.

Fake Actions

For debugging, it’s often useful to have a simulating server that has the same
actions as production, but doesn’t do anything with them.

To configure this, create a file ending in .fakeactions as follows:

{
 "url": "http://shesmu-prod:8081,
 "allow": ".*",
 "prefix": ""
}

where url is the Shesmu server to copy and allow is a regular expression of
which actions to copy. An optional prefix can be applied to the names of all
the actions.

If the remote server is not accessible, download the /actions endpoint to a
file ending in .fakeactiondefs. This will create a similar set of fake
actions, though statically.

Input Definitions

A input format is the type of data that Shesmu olives process–that is, the
variables that are available to Shesmu programs. The actual data comes from a
matching input data repository and many repositories can provide the same format.

Plugins will define the input format and may provide special configuration to read it. Additionally, Shesmu provides two standard ways to access this data in JSON format:

	JSON files

	JSON URLs

For every input format, Shesmu will serve all the data it knows on the URL /input/format. It will be provided as an array of objects, where the keys of the objects are the names of the variables and the values are a standard conversion scheme described in the plugin implementation guide.

To provide a set of fixed data, create a JSON file ending in .format-input containing this array of objects. This can be copied from a running Shesmu instance at /input/format.

To access data remotely, create a file ending in .format-remote as follows:

{
 "url": "http://some.url/format/endpoint",
 "ttl": 10
}

where url is the URL to download the data and ttl is the number of minutes
to cache the data for.

Saved Searches

Shesmu’s Actions dashboard provides a way to sift through the actions that
olives have generated. It can be useful to save these searches. By clicking the
Save Search, the search will be saved in the browser. They can be shared by
clicking the clipboard icon beside a saved search to copy the search and then
using the Add Search button on the dashboard and pasting in the text
copied. The Import Searches and Export Searches can also be used to copy
all searches and upload them to a different instance.

To go beyond person-to-person sharing, the search filter JSON, created by
either clicking the Show Search button, can be saved to a file ending in
.search in the Shesmu configuration directory. The name of the file will be
used as the name of the search.

It is not recommended to save searches that reference a particular olive source
location. Every time the file is updated, the olive’s hash will be updated and
the filter will no longer match. The hash property in the filter can be
changed to null to avoid this issue. Even if this were not the case, it is
possible that the olive will move around in the script and the line and column
that mark the start of each olive will change.

Unreleased

	Fix GitHub release workflow

	Make simulation more clear when undeclared variables are allowed

	Update README files with new requirements, clarifications about plugin-gsi-common

[1.25.0] - 2023-05-16T17:32+00:00

	Replace SFTP file information functions with single stat function

	Add Cardea (QC Gate ETL) case_summary input format

[1.24.0] - 2023-04-18T18:08+00:00

	Fix OpenAPI schema

	Fix Basic filter view saying ‘Matches’ for negated regex matching

	Fix GitHub Pages build by replacing grafana-datasource logo.svg with the original file

	Redesign input format cache

	Export simulation cache staleness count requests

	Fix NPE when action is concurrently purged

	Improve error reporting in Simulator when populating caches

[1.23.0] - 2023-02-15T19:54+00:00

	Add a gauge to monitor the number of items sent to a refiller

	Runscanner -> 1.15.1

	Add a paste input source to guided meditations to extract matching strings

	Add functions for returning list of names of Accredited and Accredited with Clinical Report projects from Pinery plugin

	Remove vidarr-workflow-run:<id> tag from action cards

[1.22.0] - 2023-01-04T19:19+00:00

	Update Nabu plugin to use version 3 API

	Add swizzle operation

	Guided meditation fixes

	Fix bad bytecode using signatures after Flatten or Require

	Adds new remote jsonconfig plugin

	Update Docker build to support BuiltKit, typescript 4.3.2 and Java 17.

[1.21.0] - 2022-11-08T13:26+00:00

	Upgrade to Java 17

	Add back NIASSA algebraic type so olives may filter

[1.20.0] - 2022-10-13T17:52+00:00

	Adds metrics for cache refresh start and end times

	Makes source vidarr server explicit for cerberus_fp input_file IDs

	Changes swagger contact info to new github issue

	Fixes incorrect parameter specification for /constant in swagger

Niassa plugin:

	Obliterate this plugin and any references to it.

[1.19.3] - 2022-06-22T19:04+00:00

	Display cerberus_fp workflow_version even when workflow version contains four parts (3 for the version and one for the Niassa workflow accession)

	Vidarr -> 0.8.0

	Cerberus -> 0.2.11

[1.19.2] - 2022-05-25T15:33+00:00

	Assign migration action error strings to correct errors list

[1.19.1] - 2022-05-24T20:17+00:00

	Fix syntax for string formatting in migration action

[1.19.0] - 2022-05-24T14:08+00:00

	Add more informative text to ‘input files not yet converted’ WAITING migration actions

	Fix bug where dumpers are not cleaned up

	Doc improvement to clarify how ties are handled in Pick Max/Pick Min

	Use the aggregate skip status from cerberus to categorize cerberus_fp records

	Runscanner -> 1.13.2

	Vidarr -> 0.7.0

	Cerberus -> 0.2.10

Issues:

	Syntax error in MigrationAction

[1.18.5] - 2022-03-21T19:41+00:00

	Revert “Track dumper creation so that they can be stopped and finalized.” (See: GP-3243)

[1.18.4] - 2022-03-18T18:47+00:00

	Fix confusing errors when ? fails for other reasons1~

[1.18.3] - 2022-03-17T17:58+00:00

Changes:

	Pick max fileSWID by path for migration

	Track dumper creation so that they can be stopped and finalized.

	Update demo data to current data formats

	Vidarr -> 0.5.0

[1.18.0] - 2022-01-26T19:25+00:00

	Don’t show “Retry Failed Workflow” button on Succeeded workflow runs

	Add resistance to “Delete & Purge”

	Runscanner -> 1.13.1

	Vidarr -> 0.4.12

[1.17.0] - 2021-12-09T13:39+00:00

	Remove JSON Schema support

	Allow action commands to remove other actions

	Remove command line tools no one uses

	Add cerberus_fp_skipped input format

	Add pipedev-skipped cache configuration

	Don’t include records with a null skip value in CFPSkippedValue

	Add skip and stale attributes to cerberus_fp_skipped

	Vidarr -> 0.4.11

	Cerberus -> 0.2.9

[1.16.0] - 2021-11-10T19:08+00:00

Changes:

	Detailed counts about accepted and ignored actions when running bulk commands

	Allow creating object fields from a gang

	Allow wildcard binding in match

	Allow Match to operate on optional types

	Add Tabulate syntax for Vidarr retry support

	Fix action parameter sorting

	Vidarr -> 0.4.10

	Cerberus -> 0.2.8

[1.15.4] - 2021-10-15T17:31+00:00

Changes:

	Pass timeout variable directly to task runtine block

[1.15.3] - 2021-10-14T17:43+00:00

Changes:

	Fix NullPointerException when Vidarr enginePhase is null

	Add counter for ssh connection pool errors

	Fix instrumental_model in cerberus_fp non-Niassa sample records

	Add support for configuring Guanyin report Cromwell task timeout

	vidarr -> 0.4.8

	cerberus -> 0.2.7

[1.15.2] - 2021-09-15T20:03+00:00

Changes:

	Fix case where FAILED Vidarr actions would remain QUEUED indefinitely

	Fix typo in Vidarr actions

	cerberus -> 0.2.6

	vidarr -> 0.4.7

[1.15.1] - 2021-08-13T20:51+00:00

Changes:

	Removed debug lines

[1.15.0] - 2021-08-13T18:43+00:00

Changes:

	Add Version keyword to syntax

	Fixed cases in the server where HttpExchange was not closed

	vidarr -> 0.4.6

	cerberus -> 0.2.4

	run-scanner -> 1.13.0

Pinery changes:

	Add pinery_ius_include_skipped input format

[1.14.0] - 2021-07-12T15:30+00:00

Changes:

	Filter out individual run-libraries marked as skipped

	Fixed NullPointerException when Niassa fetch fails

[1.13.0] - 2021-06-16T17:22+00:00

Changes:

	Use processPriority field on ActionState

	Prioritize QUEUED and INFLIGHT actions as they need to move quickly

	Change scheduler scoring

	Add create time to actions

	Add workflow run information function

	Modify max-in-flight to remove stamp coupling

	Sort unfiltered definitions and pause dashboard

	Show alerts as “Live” in simulator

	Expand documentation for implementation

	Upgrade Prometheus Java client

	Upgrade Cerberus and Vidarr

	Handle null engine parameters for Vidarr actions in UI

	Ensure every JSON generator is connected to an object mapper

	Fix Vidarr IDs in cerberus_fp

	Fix migration action logic

	Fix alert query marshalling

	Fix switching search on olives page

	Fix bug in converting action queries to ECMAScript

	Fixes in FAQ

[1.12.2] - 2021-06-03T18:04+00:00

Changes:

	Revert change to action scheduler throughput

	Fix automatic MIME types in guided meditations (bad JavaScript generated)

	Sort elements on definitions page

Vidarr changes:

	Handle results from dry-run actions correctly

	Fix Vidarr error message for “missing” state. The message displayed was incorrect for the error returned by Vidarr.

	Handle null engine phase in Vidarr action

[1.12.1] - 2021-05-31T19:48+00:00

Changes:

	Upgrade Cerberus to include new Vidarr version

[1.12.0] - 2021-05-31T14:54+00:00

Changes:

	Attempt to mirror HTTP repositories in GitHub action, fixes security failure

	Add batches variable to pinery_ius and cerberus_fp

	Fix yaml formatting in maven-publish github workflow

	Automatically register workflows during migration

	Allow polling Vidarr during migration action

	Vidarr -> 0.4.2

	Updates to operations guide for Vidarr

	Add function to extract external ID from external key

	fix typo in Vidarr action names

	Improve type error messages for algebraic data types

[1.11.0] - 2021-05-19T18:16+00:00

Changes:

	Action view UI: include base filter when freezing action view

	Guided Meditation UI: add some information about what data was fetched

	cerberus -> 0.2.0

	Guided meditations actually retry compilation every 2 minutes after failure

	Add SAFETY_LIMIT_REACHED to Operations Guide

Language changes:

	Add a new Stats collector that produces summary statistics of average,
sum, count, minimum, and maximum for numbers in a For expression

Equivalent Strings plugin:

	Add a plugin to assess strings which should be treated as equivalent

[1.10.2] - 2021-05-10T20:26+00:00

Changes:

	Change this factor which is effectively number of new actions per thread per
minute to compensate for the fact that the number of threads has been
decreased.

	The code generation for Flatten in For did not generate valid ES6

Languages changes:

	Create a powerset grouper

	Adds a string repeat operation using *, similar to Python

	Allow + to work for strings and a type that is convertible to string

Vidarr plugin:

	Force HTTP/1.1 version for Vidarr requests

Niassa plugin:

	Fix migration action

[1.10.1] - 2021-04-28T18:51+00:00

Changes:

	Bug fix in meditation compiler

	Redesign thread pools

	Create a threading console

	MigrationAction to migrate Niassa workflow runs to Vidarr

	Show max-in-flight from Vidarr

[1.10.0] - 2021-04-21T17:35+00:00

Changes:

	Exception handling for non-main threads

	Guided meditations retry compilation every 2 minutes after failure

	pipedev -> 2.5.19

	Bootstrap Icons -> 1.4.1

	‘Freeze View’ button on Actions and Olives for locking search results

	Remove dependency on Apache commons-lang

	Remove barberpole animation

	Suppress empty JSON file errors

	Use new chemistry from Pinery ‘flowcell_geometry’ variable

	Vidarr workflow run actions state tag

[1.9.1] - 2021-04-13T18:37+00:00

Changes:

	Force HTTP/1.1 in Guanyin requests

	Allow guided meditation to access olives

	Allow setting a custom set of clinical projects in Pinery

	Use new Java 14 APIs in generated olive code

	Relocate bootstrap methods to RuntimeSupport

	Allow using custom lookup environment for input formats

	Replace PineryClient with new HTTP client

	Allow strings to be orderable

	Force HTTP/1.1 when fetching input data

	Make sure all POST requests have Content-Type

	Runscanner 1.12.5

	Make First and Reduce order-sensitive and optionals sorted

	Create a Tuple collector

	Include chromosome lengths in interval plugin

	Add a greedy bin splitting function

	Fix bug in streaming JSON lists

	Add a tool to include genome chromosome information

	Expose subproject in pinery_ius and cerberus_fp

	Force array length to be integral

	Correctly update alert endsAt property

[1.8.8] - 2021-03-31T18:38+00:00

Changes:

	Make new Niassa parameter optional

	Correct interval plugin JAR name

[1.8.7] - 2021-03-31T17:28+00:00

Changes:

	Create a new plugin to handle interval files

	Fix compiler bug where Dict would throw ClassCastException

	Fix compiler bug where For would fail to compile if a variable name was reused

UI changes:

	Fix inability to change some Boolean UI element’s state

	Make tabs scrollable

Guided meditation changes:

	Allow a multiple-fetch operation (For)

	Insert the keyword With before Label in form creation syntax

	Remove the Flow By keywords

	Insert Print before plain text that goes on screen

	Rename Fork to For

	Change the Repeat and Table constructs to be more like normal For expression with a different keyword (DisplayFor)

	Add statuses to end of guided meditations

	Create a Let operation in guided meditations

	Fix order checking in fetch olive compilation

	Fix bugs in Match construct where values in algebraic type were not available as variables

	Fix a bug in If where the false branch was not compiled correctly

	Allow variables to also be copied into Fetch Olive automatically

	Correctly output ECMAScript for For...In... expressions

	Ensure empty strings get converted to valid ECMAScript

	Fix bug generating ECMAScript for Default and coalesce

	Make sure standard functions are available in guided meditations

	Correctly distinguish between single strings and string sets parsing action queries

	Fix generated action filter for tags in guided meditations

Niassa plugin:

	Add a never_ever_launch to Niassa workflow action

Pinery plugin:

	Make sure Pinery projects are sorted sets

RunScanner plugin:

	Switch to RunScanner incremental fetch interface

SFTP plugin:

	Fix SSH connection pooling bug resulting in deadlock/hang

Vidarr plugin:

	Create action to unload data from Vidarr

	Enable bulk for Vidarr commands

	Allow deleting while WAITING_FOR_RESOURCES

	Allow reattempting workflow runs in engine phase WAITING_FOR_RESOURCES

[1.8.6] - 2021-03-02T22:07+00:00

Cerberus plugin:

	Update version to match Vidarr plugin and deal with schema changes

[1.8.5] - 2021-03-02T14:00+00:00

Changes:

	Fix bug where external timestamp checks would result in NPE

	Prevent plugin exceptions from breaking the Actions page

	Update Docker build to use JDK16 (JDK14+ is required for Vidarr plugin)

	Fix compiler error causing exception with generating algebraic object literal

UI changes:

	Make number of blocks log-scaled in ordering puzzle just like sequence puzzle

	Fix recursive diff operation in UI to handle nulls correctly, return differences found between objects

Guided Meditations changes:

	Fetch for constants and functions

	Create a fork meditation step to allow “parallel” journeys

Vidarr plugin changes:

	Exclude attempt from action equality (resulted in duplicate actions) and include staleness in ID (resulted in missing actions)

	Show engine phase per operation

	Allow reattemping unstarted workflow runs

	Upgrade Vidarr library

	Correct Vidarr action tile rendering

	Add java.time support to Vidarr JSON object mapper

	Allow setting metadata parameters globally for Vidarr

[1.8.4] - 2021-02-23T16:06+00:00

	Update to latest Cerberus

	Fix incorrect JSON serialisation of algebraic data types

	Fix Vidarr submit and status URL

	Fix Vidarr INTERNAL type

	Fix defining actions for Vidarr workflows

[1.8.3] - 2021-02-22T20:46+00:00

	Fix annotations for external_key on pinery_ius and cerberus_fp

[1.8.2] - 2021-02-22T20:21+00:00

Vidarr plugin changes:

	Fix vidarr::sign method

[1.8.1] - 2021-02-22T20:04+00:00

	Fix release problems

[1.8.0] - 2021-02-22T16:57+00:00

Changes:

	Add new Cerberus plugin

	Add new Vidarr plugin

	Fix import rules for constants and signatures where import did not work

	Allow action commands to decide if action state should reset to UNKNOWN

Guided meditations changes:

	Create file upload for guided meditations

	Fix JavaScript code for literal list

	Dump JavaScript guided meditation on failure

	Add a dynamic drop down selector to guided meditations

	Wrap main guided meditation in Start and ;

	Change Fetch and Form syntax to be clearer

	Consume leading whitespace in Define meditation parameters

	Fix incorrect JavaScript generation in Define meditations

	Fix bad JavaScript generation in Flow By Match

	Update Fetch Olive syntax

	It eliminates a bug where callable olives aren’t available.

	It removes the Let syntax and copies all the local variables in the
meditation into the simulation.

	It add the keyword Input before the format name.

JIRA plugin changes:

	Only update JIRA ticket labels if available on the JIRA “screen”

[1.7.2] - 2021-02-11T18:35+00:00

Changes:

	Read stale data instead of throwing ConcurrentModificationException in cache limiter

	Fix bad bytecode when using input variables in Default

UI changes:

	Redesign the permutation puzzle

Niassa plugin changes:

	Remove concurrency restratint on Niassa and just let Niassa be overloaded

[1.7.1] - 2021-02-08T18:48+00:00

Changes:

	Split Niassa and Pinery plugins apart

	Allow space in action filter intervals (e.g. last 20 days.

UI changes:

	Improve clarity of switch query dialog when the query will be lost

Niassa plugin changes:

	Add a concurrency limiter to analysis provenance

[1.7.0] - 2021-02-03T14:42+00:00

Changes:

	Fix text query in action search to allow partial matches

	Add guided meditations dashboard

	Add custom grouper for set combinations

	Create a Grafana plugin to access Shesmu action counts

UI changes:

	Show complete source path in olive dashboard

Pinery plugin changes:

	Clear barcode errors during grouping

	Substitute missing sequencer run directories for /

[1.6.5] - 2021-01-21T11:53+00:00

Niassa plugin changes:

	Fix exception while getting max-in-flight information

[1.6.4] - 2021-01-20T16:52+00:00

UI changes:

	Fix bug preventing Pause Script button from showing

Niassa plugin changes:

	Fix extremely slow fetch of max-in-flight information

	Include workflow names in max-in-flight Prometheus metrics

[1.6.3] - 2021-01-18T21:04+00:00

Language changes:

	Remove date formatter

UI changes:

	Change the stats budget to 5 seconds and don’t count filtering the actions in that budget.

Niassa plugin changes:

	Fix another LIMS key locking prevents locks from being released

[1.6.2] - 2021-01-15T20:13+00:00

Changes:

	Track olive execution CPU time

	Allow simulating existing olives

	Track CPU and wall clock time for cache refreshes

Language changes:

	Add new date functions to std::date::

	Create object assignment shorthand

UI changes:

	Allow saving action IDs from the UI

	Allow action and refillers to display things to the user

	Show fewer stats based if slow to compute

	Fix parsing of some algebraic type descriptors

Niassa plugin changes:

	Deal with Niassa’s IUS attributes being a incorrect with multiple IUSes

	Monitor Niassa cache refresh better

	Sign IUS in cerberus_fp and pinery_ius formats

Pinery plugin changes:

	Replace Pinery project clinical flag with pipeline

[1.6.1] - 2021-01-07T14:18+00:00

Changes:

	Reduce olive thread pool size to avoid overwhelming the machine when running

	Fix SSH connection pool and set a maximum connection limit

commit 9c2fccdf80cca35ae27165c80d015e5a726d0ed3
Author: Andre Masella andre.masella@oicr.on.ca
Date: Tue Jan 5 17:54:24 2021 -0500

[maven-release-plugin] prepare for next development iteration

[1.6.0] - 2021-01-05T22:45+00:00

Changes:

	Provide an endpoint to count the number of matching actions

	Add a drain endpoint (purge and download)

	Prevent paused scripts from running (in addition to stopping their actions)

	Add a new action state for safety interlocks

	Export current and max in flight jobs

	Allow injection constants during simulation

	Add fake refillers to simulator

Language changes:

	Allow dumpers to have column names

	Allow setting a Label on clauses (to appear in the dataflow diagram)

	Fix Dump in join operations to go somewhere

UI changes:

	Allow advanced action queries to reference saves searches

	Fix bug pretty printing time offsets in advanced action queries

	Include generated tags in histograms and stats tables

	Allow Drill Down in a new tab

	Create a histogram-by-property stats panel

	Handle generating a sequence puzzle challenge for 1 action gracefully

	Encode URL parameters in a Firefox-friendly way

Niassa+Pinery plugin changes:

	Attempt to fix LIMS key locking (again)

	Fix Pinery IUS demo data to match the current pinery_ius schema

	Copy cerberus_fp gangs to pinery_ius

	Fix bug preventing importing .niassawf files in simulation

SFTP/SSH plugin changes:

	Add SSH connection pooling

[1.5.0] - 2020-11-18T16:09+00:00

Changes:

	Fix incorrect tag regular expression search; regular expression searching on
tags was missing results.

Language Changes:

	Add IfDefined syntax; This is a new feature meant to operate with coming
new features in the simulation dashboard to permit conditional compilation.

UI Changes:

	Show the base search on the actions page

	Fix sequence generator for dangerous commands to have no duplicates

	Fix pager bug where page doesn’t advance fully

TSV/Config Changes:

	Export bad records from structured config files (.jsonconfig) via
Prometheus (shesmu_structured_config_bad_entry)

[1.4.7] - 2020-11-04T19:16+00:00

Language changes:

	Add expression to extract capture groups from a regular expression
This adds an expression to pull capture groups as a tuple if a regular
expression matches. This does them positionally, because Java does not
provide an API to get information about named capture groups.

	Add functions to create dates from numbers

UI Changes:

	Pretty print downloaded JSON files

Pinery Plugin Changes:

	Add run_id to pinery_ius

[1.4.6] - 2020-10-30T10:37+00:00

Changes:

	Add tag regex action filter to Swagger

	Fix regex tag matching in query pretty printer (fixes advanced search)

UI Changes:

	Change popup menu calculation again

[1.4.5] - 2020-10-29T11:22+00:00

Changes:

	Add a new regular expression filter for action tags

	Fix cast class error with join temporary

UI Changes:

	Display parse errors for advanced search

	Improve advanced search UI feedback
This changes the advanced search input box to provide a visual indicator of
the query’s status and some indication that Enter should be pressed to
update.

	Fix popup menu positioning again

	Fix display of time ranges in basic search

	Fix formatting of stats ranges

	Fix month selector for time ranges

	Refresh searches from server on Actions page
The searches provided by the server are populated at page load time. Since
searches can be updated based on changes in JIRA, this changes the Actions
page to reload the searches every 15 minutes.

	Add a button to download SVG diagrams (on both the Olives page and the simulator)

	Move counts down in metro diagrams
The counts in the metro diagrams are the number of output records and this can
be difficult to recognise. This shifts all the counts down by a half row so
that the count is between the clause that produced and the clause that consumed
it.

Simulator Changes:

	Improve extra definitions buttons (make the styling consistent and add a download button)

	Improve type parsing and WDL outputs (this allows `wdl_outputs) to be imported correctly)

	Allow sharing a script from the simulation console

Niassa Plugin Changes:

	Pull more job status information from Cromwell (failure information mostly)

SFTP Plugin Changes:

	Improve the SFTP refiller
This makes a few improvements to the SFTP refiller:

	perform reading stdout and stderr and writing to stdin in separate threads to
avoid buffering

	when reading the first line from the child, it checks that it is OK or
UPDATING and complain about it

	kill processes that don’t respond appropriately

[1.4.4] - 2020-10-19T10:44+00:00

Changes:

	Alerts from Reject or Require clauses now report the line number of the olive rather than the clause.

	Data flow counts for Export Define olives are reported better in Prometheus.

	Clear counts for .actnow files when deleted

Language changes:

	Improve type safety of algebraic types comparisons

UI changes:

	Create a new definitions dashboard

	Allow ignoring unused variables in simulation

	Add groups to Add Filter dialog for actions and alerts

	Put buttons and menus of commands in alphabetical order

	Improve Export Search dialog

	Fixes a bug where deleting entries did not save in Extra Definitions in the
simulator and the saved searches on the Actions page.

	Fix bug where repeat count was negative (on browser console)

	Fix table menu used on the Olives page causing it to look like it should be
filtered even though it isn’t.

	Improve combination locks for dangerous commands

	Synchronize settings across tabs

	Fix a problem where pop up menus will appear in strange locations on the
page.

	In advanced search, this attempts to refresh the contents as you type, which
overwhelms the backend causing the front end to behave poorly. This waits
until enter is pressed.

	Add missing icons to Bulk Commands menu

Niassa+Pinery plugin:

	Use an algebraic type for pinery::...::platform_for_instrument_model

	Fix bug where actions with extra input files were marked as SUCCEEDED
instead of HALP.

[1.4.3] - 2020-10-06T10:56+00:00

Changes:

	Fix missing signature functions for Export Define

	Correctly determine whether output and input formats are the same

	Allow Group By discriminators to destructure (e.g., By {run, lane, _} = ius is legal)

	Allow Group By discriminators to filter out data using OnlyIf and Univalued

	Create a std::string::truncate function

	Fix bugs parsing algebraic type signatures

	Fix ClassCastExecption bug with Require olives

	Fix date formatter

UI changes:

	Use Bootstrap icons instead of emoji

	Fix Callable Definitions page

	Add missing parser in front end for algebraic types

	Show number of definitions in Extra Definitions tab in simulator

	Create a dashboard for pauses

	Make he olive menu is scollable

	Make popup menus move with the page content when scolled

	Hide UI elements before selections are made

	Fix tab switching on data refresh

	Add a pane with selected items when doing a multi-select

	Make Add Filter → Tags only show relevant tags

	Collect action commands in a menu on action tiles

	Improve pager layout

	Improve navigation and labels in alert display

Niassa+Pinery plugin:

	Add workflow kinds to Niassa

	Truncate annotations in Niassa to 255 characters

	Add new barcode_kit field from v8 Pinery

[1.4.2] - 2020-09-15T18:29+00:00

Changes:

	Don’t prefix qualified names in join.

	Create a new signer accessor when joining against a call (fixes bug using Call)

	Fix invalid bytecode generated for Match

	Don’t require output be used in Export Define olives

UI changes:

	Asynchronously fetch tags

	Update alert pager UI correctly

	Correctly restore state on the Olives page

[1.4.1] - 2020-09-08T19:51+00:00

Changes:

	Fix type assignability for tuples and objects

[1.4.0] - 2020-09-08T17:30+00:00

Changes:

	Return full-qualified names during binding

UI changes:

	Fix error when close callback is called twice

	Fix bug where source locations don’t get added properly

Language changes:

	Add algebraic data types

	Allow unused variables if definition is exported

SFTP plugin changes:

	Fix json-dir-list thinking some directories were files

Niassa plugin changes:

	Fix bug where LIMS key locks are not purged

JIRA plugin changes:

	Use complex input field values when transitioning required JIRA fields

[1.3.0] - 2020-09-02T17:52+00:00

Changes:

	Create an operations training guide

	Don’t break status page if loading invalid on-disk input data

	Log cache information during exceptions

	Make sure all exported definitions are available in simulation

	Track the number of unique actions produced for each file

	Update demo pinery_ius data to match new format

Language changes:

	Add function to get a string’s hashcode

	Allow exporting and sharing Define olives

	Allow getting the action name

	Allow joining against Define olive output

	Create type accessor for input formats (InputType)

	Fix signer accessor hoisting bug

UI changes:

	Add search import button

	Allow renaming a saved search

	Fix flex layout problems in alerts dashboard

	Fix start/end times on alerts

	Show Export Search button even if there are no actions matched

	Streamline UI internals

Config plugin changes:

	Add has function for jsonconfig

Niassa plugin changes:

	Add override for LIMS key lock

	Add additional tests for basesmaks with no indices

	Make index 1 handled the same way as index 2 when grouping basemasks

JIRA plugin changes:

	Allow default values for required JIRA fields

[1.2.1] - 2020-08-10T18:23+00:00

Niassa/Pinery plugin:

	Allow bases masks like y51 to be produced

[1.2.0] - 2020-08-10T15:05+00:00

Changes:

	Create a Check pragma

	Create intersection join operations

	Add min, max and clamp functions

	Ignore unknown fields on source locations in REST API

	Allow converting advanced searches back into basic

	Make exported constants available to script checker

Niassa/Pinery Plugin

	Add run_lane_count to pinery_ius

	Allow bases masks like y51 to be parsed

Run Scanner plugin:

	Expose RunScanner flowcell geometry functions

JIRA plugin:

	Add a comment when reopening tickets

SFTP plugin:

	Add a fetched date to unix_file

	Create a native program to scan directories over SFTP

[1.1.0] - 2020-07-23T17:32+00:00

UI:

	Fix bug with advanced search
The not-equals/in flag from the queries in the advanced search was being
incorrectly disregarded.

	Fix event listener on advanced searches

	Fix bug where hidden histograms aren’t rendered

	Fix filter type in crosstab cells

	Upgrade to advanced search when basic won’t do

	Fix popup menu calculations

Niassa/Pinery plugin:

	Expose Pinery provider in pinery_project source

	Fix HALP state for fixable actions
Actions that are fixable (updatable by signatures) should transition to the
match’s state rather than HALP.

	Fix comparison when getting workflow SWID for logging

RunScanner plugin:

	Fix incorrect splitting when Run Scanner returns an error
The Run Scanner plugin makes the assumption that if it fails to fetch the
flowcell geometry, it can return an empty list and downstream processes will
consider this an error state. The lane splitting grouper however, did not
reject such records. This change rejects them.

[1.0.5] - 2020-07-16T17:03+00:00

Changes:

	Fix problem in Actions dashboard causing 400s using server searches

	Fix bug causing saved search to default to All Actions on Actions dashboard

[1.0.3] - 2020-07-15T21:19+00:00

Changes:

	Remove deployment to non-functional GitHub Packages Maven

[1.0.1] - 2020-07-15T21:06+00:00

Changes:

	Fix bug in Docker build process

[1.0.0] - 2020-07-15T20:42+00:00

First official release

Changes:

	Fix LIMS key locking issues in Niassa plugin

	Create a demo configuration

	Add date-from-integer library functions

	Fix incorrect start up time on status page

	Misc UI fixes and improvements

[0.0.4] - 2020-07-14T18:39+00:00

Changes:

	None (developing build process)

[0.0.2] - 2020-07-14T18:36+00:00

Changes:

	Start of new release process

Static Actions

While Shesmu is mostly about the olives, it does runs actions and it can be
convenient to do that directly. These can be actions generated manually or
using the olive simulator.

To use the simulator:

	Go to Tools, Olive Simulator and write a script to generate the desired actions

	From the Actions tab, click Download to save the resulting actions.

	Place this file, ending in .actnow into Shesmu’s configuration directory.

These new actions will be visible in the Actions dashboard. Since they aren’t
connected to any olive, they will not be on the Olives page. They will be
listed as coming from the .actnow file and the Olive Source filter on the
Actions page can find all actions from that file.

Files can contain different kinds of actions.

The actions in the file are fixed. If they need to be updated in anyway, the
file can be replaced or edited to include new actions, but Shesmu will never
modify the file.

If it is desirable to generate the file manually (or edit the output from the
simulator), the .actnow file is a JSON array of the actions to launch. Each
action has the following format:

{
 "name": "action_name",
 "parameters": {
 parameter values
 }
}

The "name" is the fully qualified name for the action (i.e., the name as it
appears on the Definitions → Actions page) and the parameters are encoded
in the standard Shesmu way.

Algebraic Values without Algebra

The goal of algebraic types in Shesmu is getting polymorphism into olives.
Shesmu’s type system is intentionally rather strict. It allows optional types
as a way of eliding information with the case that missing information must be
explicitly handled somewhere. It’s also possible to convert information to
JSON, but it can only be really explored if it’s converted back to a particular
type.

Background

In most programming languages, a value belongs to a particular type. In Java,
int is a type that can take on 2^32 possible values each with some meaning.
In Java, the int type and the String type have no values in common.
Although Java doesn’t permit it, it would make sense to have a variable that
could be either and int or a String and there would be no confusion because
no int value could ever be confused for a String value. Effectively, we are
creating a new type that is int + String. That’s the algebra in algebraic
types. Rather than a +, many languages uses |, as does Shesmu.

Languages that use algebraic data types, including Scala and Rust, typically attach names to separate out the values. For instance, in Rust:

enum Foo {
 Something(String),
 Otherthing(String)
}

Elsewhere in the Rust program, Foo::Something(some_string) can be used to
create a new value. For Shesmu, the same approach is taken where the different
members in a algebraic type have names to help sort them out.

In many languages, including Java, types have a particular name that defines
them. For instance, if we create these two classes:

class Foo {
 public String name;
 public int age;
}
class Bar {
 public String name;
 public int age;
}

The classes Foo and Bar have no relationship to each other even though they
contain identical data; there is no way to use Foo where Bar is expected.
Other languages, including JavaScript and Shesmu, take a more structural
approach:

If x Then { name = "Susan", age = 31 } Else { name = "Bill", age = 38 }

Shesmu independently creates two objects in the two paths of this If, but it
can mix the output because they have the same structure. Only the types of the
fields in an object or tuple matter.

Therefore, Shesmu needs to take a structural approach to algebraic types.
Unlike Scala and Rust, Shesmu does not define a type with all subtypes in it.
Instead, it allows creating an algebraic type anywhere and allows any
aggregation of these types as long as they are compatible.

Creating Algebraic Values

Algebraic types can contain values if desired. Without values, algebraic types work much like an enum in Java:

TypeAlias suit HEART | SPADE | CLUB | DIAMOND;
Function symbol_for_suit(suit s)
 Match s
 When HEART Then "♡"
 When SPADE Then "♠"
 When CLUB Then "♣"
 When DIAMOND Then "♢";

However, algebraic types can also carry extra information:

 TypeAlias analysis SEQUENCING_ONLY | ALIGN {string};
 Function reference_for_analysis(analysis a)
 Match a
 When SEQUENCING_ONLY Then ``
 WHEN ALIGN{reference} Then `reference`;

The type of information is the same as Shesmu tuples and named tuples/objects. For instance, the above could be:

 TypeAlias analysis SEQUENCING_ONLY | ALIGN {reference = string};
 Function reference_for_analysis(analysis a)
 Match a
 When SEQUENCING_ONLY Then ``
 WHEN ALIGN{reference = reference} Then `reference`;

Note that TypeAlias declarations must be at the top of the file, following the Version and Input format declarations.

 Version 1;
 Input cerberus_fp;

 TypeAlias analysis SEQUENCING_ONLY | ALIGN {reference = string};

Combining with Algebraic Values

Shesmu algebraic values are structural, meaning that any two algebraic values
that have non-conflicting structures can be merged. For instance, in:

 Switch foo
 When 0 Then ALIGN {"hg19"}
 When 1 Then ALIGN {"hg38"}
 When 2 Then ALING {"mm10"}
 When 3 Then ALIGN {"mm9"}
 Else NO_ALIGN

this expression will have a type ALIGN{string} | ALING {string} | NO_ALIGN.
Realistically, that ALING is probably a typo, but Shesmu doesn’t know that.
It would be an error two write this:

 Switch foo
 When 0 Then ALIGN {"hg19"}
 When 1 Then ALIGN {"hg38"}
 When 2 Then ALIGN {3}
 When 3 Then ALIGN {"mm9"}
 Else NO_ALIGN

since ALIGN{string} and ALIGN{integer} are in conflict. Shesmu will raise a
type error when it tries to assign this value if there is a conflict.
Assignment occurs when a value is used in the With block of a Run or
Refill olive, calling a function, calling a Define olive, or performing a
Match expression.

Flow with Algebraic Values

Once an algebraic value exists, there needs to be a way to separate the cases
back out. Like all other values, algebraic values can be used in Switch,
==, and != for exact comparisons. To discriminate out the different types
mixed together, the Match expression can be used. Match works similarly to
Switch, but it’s comparing structure rather than value. Assuming a value x
has type FOO {integer} | BAR, the different paths can be teased out using a
Match as follows.

Match x
 When FOO { factor } Then factor * 10
 When BAR Then 0

Like destructuring assignment with tuples, FOO {factor} will extract the
nested values and make them accessible. Unneeded values can be discarded using
_ or the entire value using _ (i.e., FOO _ will match FOO and discard
any information while FOO {_} is look for a tuple-like algebraic value and
will discard one parameter). For algebraic values with object fields, it is
possible to do FOO * which will make all the fields available as variables.

By default, a Match must be exhaustive. That is, it must handle every
possible algebraic type it is given. If this is undesirable, there are two
alternatives available: Else and Remainder.

Suppose an olive has:

Function analysis_for_project(string project)
	 Switch project
		 When "a" Then CANCER {"hg38"}
		 When "b" Then CANCER {"hg19"}
		 When "c" Then VIRAL {"hpv", "hg19"}
		 When "d" Then VIRAL {"hpv", "hg19"}
 Else SEQUENCING_ONLY;

Else works much like the Else in a Switch and provides a value if all the
other matches fail.

 # Determine if this olive should run on this data; use Else to cover other cases
 Where Match analysis_for_project(project)
 When CANCER {_} Then True
 Else False

Remainder also provides a default value, but it retains access to the original value:

 Function reference_for_analysis(CANCER{string} | VIRAL{string, string} analysis)
 # Match is exhaustive, so no Else/Remainder
 Match analysis
 When CANCER{genome} Then genome
 When VIRAL{_, genome} Then genome;
...
 Let
 project, sample,
 reference = OnlyIf
 # We remove the SEQUENCING_ONLY case and pass the other values to reference_for_analysis
 Match analysis_for_project(project)
 When SEQUENCING_ONLY Then ``
 Remainder (a) `reference_for_analysis(a)`
...

A subtle but important difference here is that this code would fail:

 Let
 project, sample,
 reference = OnlyIf
 Match analysis_for_project(project)
 When SEQUENCING_ONLY Then ``
 Else `reference_for_analysis(analysis_for_project(project))`

That is because analysis_for_project returns the type CANCER{string} | VIRAL {string, string} | SEQUENCING_ONLY and reference_for_analysis take the
parameter type CANCER{string} | VIRAL {string, string}. Because the
SEQUENCING_ONLY path was handled by the Match, the a in Remainder has
only CANCER{string} | VIRAL {string, string} which is what
reference_for_analysis accepts.

In an algebraic sense, Remainder has the original type minus all the types
handled in the Match.

A Random Aside: Product Types

In these algebraic type discussions, we’ve only covered addition and
subtraction. Is multiplication possible? Yes! That’s what tuples are. It’s
non-commutative multiplication, but, hey, you get what you get.

Algebraic Types in JSON

Every Shesmu type can be converted to/from a JSON type. For algebraic types,
the structure is similar for all 3 types.

An empty algebraic value (e.g., FOO) is converted as:

{
 "type": "FOO",
 "contents": null
}

While Shesmu will always emit "contents": null, it will also accept
"contents": [] and "contents": {}.

A tuple-like algebraic value (e.g., FOO {3}) is converted as:

{
 "type": "FOO",
 "contents": [3]
}

An object-like algebraic value (e.g., FOO {f = 3}) is converted as:

{
 "type": "FOO",
 "contents": { "f": 3 }
}

Is Shesmu Right for Me? Ask your Doctor

This document is meant to help you decide if Shesmu would be a good fit for
your organisation and what it would take to get a Shesmu instance running.

Background: Our Before Times

As an explanation for the problem we were trying to solve. OICR GSI runs a
genomics data processing pipeline. We collect data off of DNA sequencing
machines and metadata describing what was sequenced (and how it was prepared)
and run analysis batch jobs. These jobs write their output in two places: a
data store for the data itself and a metadata store describing the provenance
of that data. The analysis of one job feeds into the analysis of other jobs.
The metadata tracks the format of the data, the program that generated it, the
input data used by that program.

Initially, we had deciders which would ingest the entire metadata store and
try to figure out what analysis should be done but was not yet done and then
launch the batch analysis jobs. We would launch these deciders via cron.

This had a few problems:

	writing deciders was intellectually hard

	deciders were hard to debug

	deciders waste most of their effort (i.e., most of what they do is download a very large file, check that analysis is current, which is mostly true, and then exit)

	deciders were tedious to change and as customers had more bespoke requirements, the number of configuration options ballooned

Shesmu attempts to address these problems in several ways:

	it runs continuously providing

	a way to reuse data more efficiently

	a way to hold state a know if work has been completed

	it separates what to do from when to do it; this makes debugging possible since what can be queried without doing anything

	the explanation of what to do is meant to be as concise and clear as possible, to reduce the mental load

What does Shesmu do?

Shesmu operates in three steps:

	it queries other systems for input data

	it passes this input data through olives which manipulate the data and produce actions

	it schedules and runs actions

A key design of Shesmu is that actions are stateless. Shesmu has no history of
what it’s done. Every time Shesmu restarts, it reprocesses all its input data
and generates a set of actions. Actions must determine if they have been
previously run.

Although action was run a workflow in our original conception, it has
expanded beyond that. We have action that include Open a JIRA ticket. If this
action is rerun, it doesn’t always open a new ticket; it checks that JIRA has a
open ticket that matches certain criteria. Similarly, run a workflow doesn’t
necessarily run a workflow; it checks the metadatabase to check if a workflow
with matching parameters has been run.

The mental model I use for an olive is that it takes a table of input data and
reshapes the data until it fits the parameters for an action.

How do I deploy it?

Setting up a Shesmu instance can be a few minutes or a few months depending on
what is involved. Shesmu reads all of its configuration from a directory
containing configuration files that active plugins.

The configuration of any plugin varies depending on its complexity. There is a
plugin that makes a list of strings from lines in a file; that’s an easy one to
configure.

Realistically, for your needs, there may not be plugins that interface with
your systems and writing them will be necessary. The plugin
implementation explains how to write plugins in Java. Once
a plugin JAR is built, deploying it involves installing the JAR in the class
path and creating appropriate configuration files in the Shesmu configuration
directory.

Some of the simpler plugins have been designed, built, tested, and deployed in
an hour.

Shesmu’s security model is that the REST API is largely read-only and
configuration on disk determines most of its behaviour. It has one REST
endpoint that allows erasing actions, but since actions are continually
regenerated, this is fairly minor. Securing disk is the responsibility of the
administrator deploying it.

How do I talk to it?

Shesmu provides three main interfaces:

	a web user interface for user interaction

	a REST interface for automation

	a Prometheus [https://prometheus.io/] metrics interface

The web interface is a wrapper around the REST interface, so all functionality
provided by the user interface is available via the REST interface.

Because Shesmu is very plugin-driven, some of the data that comes back via the
REST interface is different depending on the plugins that are active.

Planning Your Deploy

To perform a deploy, we recommend the following steps:

	Have a look through the plugin-*/README.md and see if any of the plugins seem useful.

	Determine what input data you will need.

	Develop an input format for this data. See the implementation guide.

	Deploy a test instance and get comfortable with writing an olive using the simulation dashboard on your test instance (Tool → Olive Simulator).

	Determine what information you need for an action. In particular:

	what information is required (is it uniform? each JIRA action takes identical parameters but each Vidarr workflow is a snowflake)

	what are the criteria that make actions unique

	how to determine if an action is already completed

	how to launch and action and check its progress

	what additional information you want to report by the REST/web UI

	Write and test your action plugin.

	Start writing and testing olives.

As general tips:

	Prometheus is technically optional but very, very valuable

	it’s recommended that your actions can be configured in a dry-run mode; we use this as part of our deployment procedure for new workflows

	putting the smarts in other services and having Shesmu call out to them is a very good design choice

	custom functions and constants can be provided by plugins; use them for accessory data, complex transformations, or to take advantage of existing code

	there is a lot of caching in Shesmu and caching services are available to plugins

Understanding the Shemsu compiler

This is a guide to understanding the Shesmu olive compiler. This is meant to
explain the core components that get the language to Java bytecode.

It assumes you have:

	a working understanding of Java bytecode. The DZone bytecode tutorial [https://dzone.com/articles/introduction-to-java-bytecode] is a good place to start.

	have read the plugin implementation guide

	have written olives and understand the general structure of olives

Since the compiler will continue to expand and change, the bytecode dumps in
this tutorial may be different from future output of the compiler. However, the
core behaviour of the Shesmu compiler is based on Java’s
Stream [https://docs.oracle.com/javase/8/docs/api/index.html?java/util/stream/Stream.html],
which is stable, so they will be functionally similar. Bytecode dumps can be
seen on the olive dashboard.

Remember: JVM bytecode lacks generic type information. All the generic type
information is shown in its erased form.

To start off, compiling a simple script:

 Input shesmu;

is compiled to:
public class dyn/shesmu/Program extends ca/on/oicr/gsi/shesmu/ActionGenerator {

 public <init>()V
 ALOAD 0
 INVOKESPECIAL ca/on/oicr/gsi/shesmu/ActionGenerator.<init> ()V
 RETURN
 MAXSTACK = 0
 MAXLOCALS = 1

 private clearGauge()V
 RETURN
 MAXSTACK = 0
 MAXLOCALS = 1

 public synchronized run(Lca/on/oicr/gsi/shesmu/ActionConsumer;Lca/on/oicr/gsi/shesmu/InputProvider;)V
 ALOAD 0
 INVOKEVIRTUAL dyn/shesmu/Program.clearGauge ()V
 L0
 L1
 RETURN
 MAXSTACK = 0
 MAXLOCALS = 3

 public static <clinit>()V
 RETURN
 MAXSTACK = 0
 MAXLOCALS = 0
}

This class, dyn.shesmu.Program, extends the ActionGenerator superclass,
which is used by the server to execute actions. The class name is reused for
every script, but since each is loaded by a separate class loader, they are not
in conflict.

The constructor is relatively boring; it just calls the super-constructor. The
run method is where all the interesting things happen:

	The clearGauge method is executed at the start and performs all the
necessary initialisation for gauges. This is a convenience of compiler
design: the run and clearGauge methods can be built in parallel even though
they are executed sequentially.

	Since this script has no olives, the run method does nothing else and
returns.

Let’s move to a script with an olive:

Input shesmu;
Olive
 Run nothing With value = type;

The output bytecode is more complicated. It is laid out below in chunks with
commentary.

The initialisation is much the same:
public class dyn/shesmu/Program extends ca/on/oicr/gsi/shesmu/ActionGenerator {

 public <init>()V
 ALOAD 0
 INVOKESPECIAL ca/on/oicr/gsi/shesmu/ActionGenerator.<init> ()V
 RETURN
 MAXSTACK = 0
 MAXLOCALS = 1

 private clearGauge()V
 RETURN
 MAXSTACK = 0
 MAXLOCALS = 1

 public synchronized run(Lca/on/oicr/gsi/shesmu/ActionConsumer;Lca/on/oicr/gsi/shesmu/InputProvider;)V
 ALOAD 0
 INVOKEVIRTUAL dyn/shesmu/Program.clearGauge ()V

Now there are interesting differences. First, the current time is stored for timing the olive runtime.

 L0
 INVOKESTATIC java/lang/System.nanoTime ()J
 LSTORE 3

Now, a stream of the correct type must be started that will contain the right
objects. The supplied argument is
InputProvider
and its purpose is to provide a stream of values for a class specified by the
input format. The olives can request all the data for the required format.

For every script, there is one input format. At the top of the file Input shesmu; selects the input format. Each format has a corresponding
InputFormatDefinition class. For Input shesmu;,
ShesmuIntrospectionFormatDefinition.java
describes the input format. Each input format has a method itemClass() that
returns a class that holds the values that are passed through the stream, that
is, the T in InputProvider.<T>fetch. For
ShesmuIntrospectionFormatDefinition, the specified class is
ShesmuIntrospectionValue.java.

When the InputProvider.fetch is invoked, it will provide a stream of data of the
correct type from all the input repositories. If the input format is a
BaseInputFormatDefinition<V,R> as described in the plugin
implementation guide, this will call effectively do
ServiceLoader.load(R.class).stream().flatMap(InputRepository::stream):

 ALOAD 2
 LDC Lca/on/oicr/gsi/shesmu/core/input/shesmu/ShesmuIntrospectionValue;.class
 INVOKEINTERFACE ca/on/oicr/gsi/shesmu/InputProvider.fetch (Ljava/lang/Class;)Ljava/util/stream/Stream; (itf)

This particular olive has no filters, so, a method reference/lambda is
generated and then forEach is called on the stream and the stream is
closed:
 L1
 LINENUMBER 2 L1
 DUP
 ALOAD 0
 ALOAD 1
 INVOKEDYNAMIC accept(Ldyn/shesmu/Program;Ljava/util/function/Consumer;)Ljava/util/function/Consumer; [
 // handle kind 0x6 : INVOKESTATIC
 java/lang/invoke/LambdaMetafactory.metafactory(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;
 // arguments:
 (Ljava/lang/Object;)V,
 // handle kind 0x5 : INVOKEVIRTUAL
 dyn/shesmu/Program.Run nothing 2:6(Ljava/util/function/Consumer;Lca/on/oicr/gsi/shesmu/core/input/shesmu/ShesmuIntrospectionValue;)V,
 (Lca/on/oicr/gsi/shesmu/core/input/shesmu/ShesmuIntrospectionValue;)V
]
 INVOKEINTERFACE java/util/stream/Stream.forEach (Ljava/util/function/Consumer;)V (itf)
 INVOKEINTERFACE java/util/stream/Stream.close ()V (itf)

Finally, the olive's run time is recorded using the time stored earlier:
 GETSTATIC ca/on/oicr/gsi/shesmu/ActionGenerator.OLIVE_RUN_TIME : Lio/prometheus/client/Gauge;
 ICONST_2
 ANEWARRAY java/lang/String
 DUP
 ICONST_0
 LDC "/home/amasella/shesmu/local/example.shesmu"
 AASTORE
 DUP
 ICONST_1
 LDC "2"
 AASTORE
 INVOKEVIRTUAL io/prometheus/client/Gauge.labels ([Ljava/lang/String;)Ljava/lang/Object;
 CHECKCAST io/prometheus/client/Gauge$Child
 INVOKESTATIC java/lang/System.nanoTime ()J
 LLOAD 3
 LSUB
 L2D
 LDC 1.0E9
 DDIV
 INVOKEVIRTUAL io/prometheus/client/Gauge$Child.set (D)V

And the run method is finished:
 L2
 RETURN
 MAXSTACK = 0
 MAXLOCALS = 5

The signature feature of Shesmu can generate two kinds of signatures: ones that
are the same for any input and ones that are computed from the input data. The
first are stored as constants and the second are method.

Therefore, the class constructor, <clinit>, prepares the ones that
are constants:
 static J Olive 2:6 signable_count

 static Ljava/util/Set; Olive 2:6 signable_names

 static J Olive 2:6 signature_count

 static Ljava/util/Set; Olive 2:6 signature_names

 public static <clinit>()V
 LCONST_0
 PUTSTATIC dyn/shesmu/Program.Olive 2:6 signable_count : J
 NEW java/util/TreeSet
 DUP
 INVOKESPECIAL java/util/TreeSet.<init> ()V
 PUTSTATIC dyn/shesmu/Program.Olive 2:6 signable_names : Ljava/util/Set;
 LCONST_0
 PUTSTATIC dyn/shesmu/Program.Olive 2:6 signature_count : J
 NEW java/util/TreeSet
 DUP
 INVOKESPECIAL java/util/TreeSet.<init> ()V
 PUTSTATIC dyn/shesmu/Program.Olive 2:6 signature_names : Ljava/util/Set;
 RETURN
 MAXSTACK = 0
 MAXLOCALS = 0

and the signatures based on data are created as methods:
 private static Olive 2:6 json_signature(Lca/on/oicr/gsi/shesmu/core/input/shesmu/ShesmuIntrospectionValue;)Ljava/lang/String;
 NEW ca/on/oicr/gsi/shesmu/core/signers/JsonSigner
 DUP
 INVOKESPECIAL ca/on/oicr/gsi/shesmu/core/signers/JsonSigner.<init> ()V
 INVOKEINTERFACE ca/on/oicr/gsi/shesmu/Signer.finish ()Ljava/lang/Object; (itf)
 CHECKCAST java/lang/String
 ARETURN
 MAXSTACK = 0
 MAXLOCALS = 1

 private static Olive 2:6 sha1_signature(Lca/on/oicr/gsi/shesmu/core/input/shesmu/ShesmuIntrospectionValue;)Ljava/lang/String;
 NEW ca/on/oicr/gsi/shesmu/core/signers/SHA1DigestSigner
 DUP
 INVOKESPECIAL ca/on/oicr/gsi/shesmu/core/signers/SHA1DigestSigner.<init> ()V
 INVOKEINTERFACE ca/on/oicr/gsi/shesmu/Signer.finish ()Ljava/lang/Object; (itf)
 CHECKCAST java/lang/String
 ARETURN
 MAXSTACK = 0
 MAXLOCALS = 1

Earlier, a method was referenced that would be converted to a Consumer and
fed to the forEach call. Here, this method is defined. This method will
produce an action (or alert if an Alert olive):

 private Run nothing 2:6(Ljava/util/function/Consumer;Lca/on/oicr/gsi/shesmu/core/input/shesmu/ShesmuIntrospectionValue;)V
 L0
 LINENUMBER 2 L0

It constructs a new action:
 NEW ca/on/oicr/gsi/shesmu/core/NothingAction
 DUP
 INVOKESPECIAL ca/on/oicr/gsi/shesmu/core/NothingAction.<init> ()V
 ASTORE 3

The loads in all the arguments:
 L1
 LINENUMBER 3 L1
 ALOAD 3
 ALOAD 2
 INVOKEVIRTUAL ca/on/oicr/gsi/shesmu/core/input/shesmu/ShesmuIntrospectionValue.type ()Ljava/lang/String;
 PUTFIELD ca/on/oicr/gsi/shesmu/core/NothingAction.value : Ljava/lang/String;
 L2
 LINENUMBER 2 L2

Then sends the action in to the consumer with data about the olive that generated it:
 ALOAD 3
 INVOKEVIRTUAL ca/on/oicr/gsi/shesmu/core/NothingAction.prepare ()V
 ALOAD 1
 ALOAD 3
 LDC "/home/amasella/shesmu/local/example.shesmu"
 ICONST_2
 BIPUSH 6
 LDC 1546533662036
 INVOKEINTERFACE ca/on/oicr/gsi/shesmu/ActionConsumer.accept (Lca/on/oicr/gsi/shesmu/Action;Ljava/lang/String;IIJ)Z (itf)
 POP
 RETURN
 MAXSTACK = 0
 MAXLOCALS = 4
}

This is the end of the example olive bytecode.

Olive Design and Lambdas

Every clause in an olive generates additional calls to methods in Java’s
Stream or methods in Shemu’s RuntimeSupport to manipulate the stream. Those
methods take parameters: some of which are simple values; others are method
references/lambdas.

When generating lambdas, it’s important to understand captures. Take the following Java code:

IntUnaryOperator adder(int offset) {
 return x -> x + offset;
}

When Java compiler it, it creates two methods:

IntUnaryOperator adder(int offset)
static int adder$lambda$0(int offset, int x)

When adder creates a IntUnaryOperator for adder$lambda$0, it must determine
which values from the enclosing context must be forced into the returned
lambda. These values are called captures. In this case, this isn’t captured,
so the target method is static, but if it accesses fields, then this must be
captured.

The Shesmu compiler must capture things in the same way. This gets much more
complicated since Java’s captures are either explicit references or,
implicitly, this. Shesmu needs to capture:

	this

	any variables/constants that the olive mentions

	the current olive line and column numbers

	the signatures

	the stream variable, in some contexts

Most of this capturing is necessary because of Define. Take the following:

 Input shesmu;

 Define foo(string x)
 Where type = x;

What does the signature of foo look like in bytecode?

Let’s assume it’s void foo(String x) and build outward from there.

First, it must take stream of ShesmuIntrospectionValue and return a modified stream:

Stream<ShesmuIntrospectionValue> foo(
 Stream<ShesmuIntrospectionValue> input,
 String x)

Second, when updating the olive data flow information, it needs to associate
that data with the calling olive, so it needs to take the line and column:

Stream<ShesmuIntrospectionValue> foo(
 Stream<ShesmuIntrospectionValue> input,
 int line,
 int column,
 String x)

It’s possible to use signatures inside the Define, but the variables that can
be included in the signature can come from both the caller and callee:

Input shesmu;

Define foo(string x)
 Where type = x; # A signature used here should have both `type`
 and `changed` in it
Olive
 foo("hi")
 Where now > changed + 3hour
 Run ...;

Therefore, signatures must be passed:

Stream<ShesmuIntrospectionValue> foo(
 Stream<ShesmuIntrospectionValue> input,
 int line,
 int column,
 long signature_count,
 long signable_count,
 Set<String> signature_names,
 Set<String> signable_names,
 Function<ShesmuIntrospectionValue, String> sha1_signature,
 Function<ShesmuIntrospectionValue, String> json_signature,
 String x)

Currently, all signatures are passed, but that could be improved.

In the case of the Where clause, Predicate<ShesmuIntrospectionValue> needs
to be generated. It will have a different signature:

boolean check(
 Instant now,
 ShesmuIntrospectionValue streamValue)

By Java convention, when making a lambda, the arguments to the lambda itself
come after the captures. In the case of Shesmu’s use of stream, this is always
the stream value (i.e., the current item in the stream).

When accessing the stream variable changed, it will generate code like:

 streamValue.changed()

This seems straight forward enough, but it’s complicated by adding For
expression, which are also implemented using Stream. Consider:

Input shesmu;

Olive
 Where For l In locations: Any l.timestamp > generated;
 Run ...;

When evaluating l.timestamp == generated, generated comes from
ShesmuIntrospectionValue in the outer olive stream while l.timestamp comes
from the inner stream generated by the For. In Java, this would be something
like:

 InputDefinition.all(ShesmuIntrospectionValue.class)
 .filter(x -> x.l().stream().anyMatch(l -> l.timestamp() > x.generated()))
 .forEach(...);

All this implicit capturing can produce some pretty yikes methods, but if you
look at lambda-heavy Java code, the methods also tend to be pretty yikes.

There’s a constant trade off here: more complexity in the compiler can be used
to avoid capturing unnecessary values.

The Group and LeftJoin operations are particularly gnarly since they have
multiple expressions connected together. For instance, consider:

Group
 ys = Where z List y + a
By x

If x, y and z are all stream variables, then only a is captured.

For grouping, two functions are needed: one which makes a key to split the data
up into subsets, and then one that merges everything in a subset together.

For ease, the compiler will generate a single set of captures for both of those
operations. That means that the key operation will capture a even though it
doesn’t need it.

Compiler Mechanics

The compiler operates in a few phases:

	Parse the file into a parse tree, rooted as a ProgramNode.

	Resolve input formats, actions, functions, and Define/call references.

	Resolve variables.

	Check the type and stream purity of everything.

	Convert everything to bytecode. This is in the render methods.

There are a lot of classes in the compiler, but the major ones are:

	OliveNode, which declares each top-level element in the file (function, olive, define olive, constant)

	OliveClauseNode, which defines clauses in an olive

	ExpressionNode, which defines all the bits and pieces of expressions

For details on components, the JavaDoc outlines the behaviour and expectations
of the classes. Most of the documentation is on the abstract classes and the
concrete classes have less since they just execute the behaviour defined by the
abstract class.

For general naming conventions:

	resolve methods convert strings into useful metadata (e.g. find the FunctionDefinition given the name in the script)

	render methods generate bytecode

	classes that end in Node are a general chunk of syntax in the language (e.g. expressions); their subclasses represent concrete bits of syntax the user can write and they should be completely interchangeable

	classes that end in Builder are utility classes that make generating bytecode simpler

ExpressionNode has many similar clones. For instance, there is an expression
node for For and then ones for each of the sources, clauses, subsamples, and
collectors in a For expression, containing other expressions. While these
are structurally different, they are built very similarly to ExpressionNode.

The method collectFreeVariabes is used to find variables used in expressions.
It serves multiple functions:

	computing captures is done as part of bytecode production in render methods

	finding signable variables for signature preparation

	determining if stream variables are used in By expressions

Type Information

The type system for Shesmu is meant to be very simple and static. There is no
inheritance and no automatic conversion. It’s also entirely bottom up. For
instance, in Java, type information flows both ways:

 List<Foo> x = new ArrayList<>();

Type information about the type argument Foo is flowing in the opposite
direction as the type information about ArrayList<Foo> being assigned to
List<Foo>.

In Shesmu, everything flows from the leaves of the tree towards the root. For instance:

 path_file(dir + 'x.txt')

If dir cannot be resolved or was defined by an expression that has a type
error, this has no valid type. Even though we know that path_file expects a
path type and the + operator can combine two paths. Shesmu will simply give
up. This is meant to keep the compiler simple.

Bytecode Generation

When generating bytecode, Shesmu uses
GeneratorAdapter [https://asm.ow2.io/javadoc/org/objectweb/asm/commons/GeneratorAdapter.html]
from the ASM package to write bytecode. It wraps this in a
Renderer
class. Renderer provides a number of utility functions, such as inserting
Imyhat objects into the bytecode. Its real purpose is to track extra
information. It knows where the current stream value is stored, which will be
different through many layers of capturing. It also tracks how to access
signatures.

The ASM bytecode generation library has a class Type that describes JVM
types. A Type object can be constructed either by knowing the JVM name for a
class, or by using Type.getType(Foo.class) where Foo is the class.

Stream Purity

Shesmu has two kinds of stream purity: olive-level (type) and For-level
(order). They are conceptually similar, but perform different functions.

For all operations on Java streams, the order or type of the items can be
changed by some operations.

In the case of olives, Group, Join, LeftJoin change the type of the
stream value while Where, Monitor, Reject, and Pick do not. A Define
olive has more stringent requirements; the original type of the input stream
(as defined in Input x;) is the only valid input type for Define olives.
Therefore, no type-changing operation can precede a call, but the operations
that do not modify the type can precede a call, including call operations to
Define olives that do not modify the type. Shesmu must figure out a stream
purity to ensure that call operations will be type-safe. Additionally,
signatures must be computed over the clauses in the original type-pure stream
plus the input half of the first transformative clause.

In For clauses, the type is not important, however, the sorting is. In
Shesmu, we want values given to olives to be stable. If, say, a bunch of items
are going to be concatenated into a string, they must be in a well-defined
order. Therefore, each clause in a For can be either order-preserving
(e.g., Where), order-creating (e.g., Sort), order-destroying (e.g.,
Flatten), or order-dependent (e.g. Reverse, Skip, Subsample).

The order checking makes sure that a chain of operations will have a stable
meaningful operation. For instance, the following is not meaningful:

For x In xs: Reverse FixedConcat x With ","

Reverse requires an order that isn’t present in the original. The following is valid:

For x In xs: Sort x.timestamp Reverse FixedConcat x.library_name With ","

Even though the final output doesn’t contain the timestamps, the output will be
stable based on the input.

The final collector matters. If the operation is Count, then order is
irrelevant. The following is valid, though kind of pointless:

For x In xs: Sort x.timestamp Flatten (y In x.libraries) Count

The Sort operation has its order destroyed by the Flatten, however Count
doesn’t care either way. The goal is to stop the user from writing dangerously
unstable output, not inefficient code.

Flatten is not always order-destroying. If the input and output of the
flattening is ordered, then there is still order:

For x In [{1, ["a,b,c"], {3,["z,y,x"]}]:
 Sort x[0]
 Flatten (y Splitting x[1] By /,/)
 FixedConcat y

Shesmu FAQ

This is intended for olive developers and operators.

It’s gone haywire!!!

On the main status page, hit the STOP ALL ACTIONS button. Also, that’s not a question.

I don’t see the alert on Shemu’s Alerts page. What gives?

Shesmu, like most of other programs, feeds data into Prometheus [https://prometheus.io/docs/introduction/overview/] and Prometheus sends alerts to AlertManager when the application is behaving badly. Shesmu also has Alert olives that create alerts about data in the system and send these directly to AlertManager. Only these data alerts will be displayed on the Shesmu Alerts page.

What going on with these actions?

Go to the Shesmu instance of interest, click on the Actions tab. Here, you can find all the actions the server is trying to perform. If you click on the Stats button, you’ll get some tables about the actions:

	counts for each action state (failed, succeeded, …)

	counts for each action type (Guanyin, Vidarr, JIRA, …)

	counts for each olive that generated an action

	cross tables for all of the above

	histograms for when an action was last attempted/check/run

	histograms for when an action was last generated by an olive

	Click on any cell or heading to filter by that criterion. At the bottom of the screen, you will see another set of buttons where you can List the actions, get more Stats on your selection, or display the JSON query that selects these action, if you’re into that kind of thing.

What’s this server trying to do?

From Internals, select Active Server Processes to see a list of things the server is currently chewing on.

What does at3sis mean?

From Tools, select Type Converter and enter the type descriptor in the box and then hit the button to get a human-friendly type.

How do I figured out how why my action failed? Why is this action unknown?

Follow the SOP: Investigating Failure to figure out the source of the problem. //TODO

There was a thing that failed. How do I make it go away?

If it’s a Vidarr workflow, choose the command to retry the failed workflow.

If you’ve changed the olive/LIMS/run blacklist/whatever to exclude this action, you can purge this action. From the Actions page, select a filter that finds your bad action, then click PURGE. If the world hasn’t changed, the olive will recreate it.

Have at look at the Last Generated by an Olive age. If this is over 2 hours, you can be very confident the olive is no longer creating this action

I changed my olive but the actions are the same. What gives?

Every time an olive runs, all the actions are generated and go into Shemu’s scheduler. When the olive runs again, it regenerates all those actions and Shesmu needs to decide if two actions are the same. Actions get to decide if two actiosn are equivalent and that may not include all parameters. If you look at the actions, it will list the olives that generated and you will see two version of the same source file.

To get Shesmu to replace the actions, purge the old ones (either individually or in bulk). This will cause the new action to be in the scheduler.

For Vidarr workflows, it uses the workflow, the input files, the LIMS keys, and labels. If your olive only changes arguments, the modified actions will not displace the old actions. Even if purged, the new action will still match the existing Vidarr workflow runs.

My workflow is having a bad time. How do I fix it?

If you have lots of actions that are going to run and fail:

	Go to the Olives page, find your olive and click the Pause Actions button. This will stop any from starting.

	Update your workflow/olive.

	Once Shesmu picks up your modified olive, it will appear in the Olives page.

	On this page, you will also see a section title Paused Dead Olives. Select your old olive.

	Click Purge Actions.

My workflow was having a bad time, but I forgot to pause it. How do I clean up the mess?

No worries, this isn’t much harder:

	Go to the Actions page.

	Click Add Filter and choose Source Olive.

	Rummage through the long list for your olive. Depending on what you are willing to erase, you can choose the whole file or a specific olive with a specific version (check the Olives page to get the current version hash).

	Click Purge.

It’s hard to get just the actions I want on the dashboard. Is there an easier way?

You can click almost any cell header or value and then use the buttons at the bottom to act on the subset of actions. Use the Add Filter button to slice and dice the actions displayed.

Can I see how some data is propagating through this olive?

Not quite, but if go to the Olives page and select the olive, click Edit in Simulator to have the source code for that file show up in the simulation dashboard. Add a Where or Dump clauses to filter the data of interest and simulate it to see what’s going on.

Glossary

These are terms that Shesmu uses with very specific meanings.

Action

A unit of work for Shesmu to do. A plugin provides a definition that
determines what parameters an action needs, an olive fills in those parameters,
and then Shesmu will perform an action until it succeeds. An action is
defined by its parameters; that is, actions with the same parameters are
duplicates. This allows Shesmu to deduplicate actions across runs with no
state.

Alert

A Prometheus [https://prometheus.io/] alert. Shesmu follows the semantics laid
out by Prometheus: an alert is effectively a set of key-value string pairs that
define some emergency for a limited (but extendible) period of time.

Clause

Syntax in an olive that reshapes data. In a functional programming model, these
are filter (Where), map (Let), or reduce (Group).

Constant

A value that is available to an olive. Constants are not necessarily constant
(e.g., now is a constant for the current time). A few constants are
built-in, but most are provided by plugins or other olives.

Descriptor

An encoded representation of a Shesmu type. Shesmu types are different from
Java types. The encoded form is guaranteed to be a valid Java identifier.
Internally, these types are called imyhat, which is Ancient Egyptian for “mould
or form”.

Filter

A predicate that determines which actions are relevant. This is used in the UI
and REST interface to select subsets of actions. Filters may describe
properties of the action itself or the olives that generated it.

Function

A function that is available to an olive. Like constants, a few functions are
built-in, but most are provided by plugins or other olives.

Gang

A set of variables that should be treated as a group. In many data formats,
there are common grouping conditions. Gangs are an easy to pre-define these
variable groups. They can be used in Group By conditions, converted into
strings, or converted into tuples.

Input Format

The data that is available to olives. This data is effectively tabular even
though it is never really encoded that way. Each record/row gets processed by
an olive where each column is available as a variable. Columns cannot be
missing/null. Missing entires need to either be substituted with dummy values
or optional values. If the schema is ragged, it can be expressed as a JSON
value.

List

A homogeneous collection of items. Shesmu does not respect order on
collections and automatically removes duplicate items. This is an intentional
design to choice to prevent matched lists where the indices mean something.
Create a list of tuples in this case.

Object

Shemu’s objects are not like Java’s object. They are more like JSON objects or
tuples with property names instead of indices.

Olive

A Shesmu program element that takes the original input data and manipulates it
down to one of the following goals:

	generation actions

	firing alerts

	exporting data to a database (a refiller)

Each olive independently handles its data (that is, no other olive in the
file/script can affect this olive). Files/scripts are scheduled as a unit, so
if one olive exceeds the maximum runtime, other olives in the file may not run.

Optional

Shesmu does not allow nulls. Instead, it uses option
types [https://en.wikipedia.org/wiki/Option_type] implemented using Java’s
Optional [https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html].

Only types explicitly declared as optional with a ? (e.g., integer?) can
be absent. Optionals cannot nest (i.e., integer?? is invalid).

Refiller

An export from an olive to a database. A refiller is meant to empty and replace
the contents of a database with the current set of data computed by an olive.
This is not likely the correct implementation of a refiller, but it is
conceptually useful.

It can be useful to think of a refiller as performing an upsert operation on
an entire table in a database.

Search

A filter with a name that allows the UI to quickly select an interesting set of
actions. The can be used for debugging or as dashboards.

Signature

A fingerprint (hash or value) derived from the values of variables read by an olive.

An action might need to be re-run if the input data changes. Since an olive
doesn’t necessarily use all of the input data, it can be useful to generate a
hash of only the data that was used by an olive in deciding to run an action.
This signature can be used by the action to determine under what conditions it
should be rerun. The input format determines which variables should make it
into the signature and which should be excluded.

Throttler

A method to stop actions from running. Since Shesmu may be talking to may
systems at once, throttlers provide a way to take some of those systems down
for maintenance or limit Shesmu’s traffic to them during an overload. Actions
and olives check for permission to run from the throttlers and will quit early
if the system is reported as overloaded.

Tuple

An ordered, heterogeneous collection of values. Similar to Scala’s
tuples [https://en.wikibooks.org/wiki/Scala/Tuples].

Variable

A value from input data. This is the “column” that is being read.

Guided Meditations

Once you have a production facility, stuff goes sideways and since Shesmu can
be integrated with other systems, it can be a tool to help diagnose problems.
The guided meditations feature allows developing debugging procedures where
Shesmu can integrate data it has from different sources to help humans figure
out what’s going on. It works a bit like a mechanics flow chart: asking
questions and suggesting things to check. To make this process easier, it can
also pull the information it recommends the user analyse using action searches,
alert searches, downloadable files, and simulations.

Each meditation can serve a different purpose and is stored in a .meditation
file. Once available on the server, they will appear under Tools, Guided
Meditations.

A meditation begins with information to be displayed followed by a next step.
Meditations are written in a modified form of the olive
language, so all the expressions available to olives are usable
in meditations. Unfortunately, meditations run in the browser, so they cannot
make use of functions and constants from the plugins or olive files. The
standard functions and constants (i.e., std::…) are available.

Displays

There are several displays supported.

Text

Text can be displayed to the user. expr is an expression that provides a
string containing text. There are additional formatting options.

	Print expr

	Bold expr

	Italic expr

	Mono expr

	Strike expr

Hyperlinks can also be displayed:

	Link labelexpr To urlexpr

[bookmark: actiondisp]
Action Searches
The actions currently present in Shesmu can be searched using the advanced
action search language. For details, see the _Actions_ page in _Advanced_ mode.
A search for actions might look something like:Actions type = "sftp-symlink"

The action queries can also include olive expressions using {}:

Actions type = "sftp-symlink" and tag = {active_projects}

This only applies to values, not the variables. For example, this is not allowed:

Actions {If something Then "type" Else "tag"} = "whatever"

Lists versus single items are more forgiving than in the regular action
queries. For instance, the following is allowed:

Actions status = {
 If std::date::now - start_time < 3hours
 Then [WAITING, THROTTLED]
 Else [THROTTLED]}
 and tag in (research, {project})

 Implementing Plugins for Shesmu

Implementing Plugins for Shesmu

Shesmu does not provide much out-of-the-box. Every environment is going to be
very different, so Shesmu is designed to be very modular. If the available
plugins are suitable, great. If not, it was designed to be easy to extend.

General Plugin Infrastructure

Shesmu uses
ServiceLoader [https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html]
to find plugins. For service loaders to work, a plugin should extend the
service interface, be marked with a @MetaInfServices annotation, and placed
into a JAR on the CLASSPATH. The Java libraries will take care of the rest.
Since all the plugins must coexist, it is strongly recommended to that a
shaded JAR [https://maven.apache.org/plugins/maven-shade-plugin/] is used.
Shading a JAR renames classes in a way that allows different versions of the
same library to coexist without conflict.

In a typical Maven build file, the following is necessary to get the basic dependencies:

<dependencies>
 <dependency>
 <groupId>ca.on.oicr.gsi</groupId>
 <artifactId>shesmu-pluginapi</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>io.prometheus</groupId>
 <artifactId>simpleclient</artifactId>
 <version>0.0.26</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.kohsuke.metainf-services</groupId>
 <artifactId>metainf-services</artifactId>
 <version>1.1</version>
 <optional>true</optional>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.ow2.asm</groupId>
 <artifactId>asm-debug-all</artifactId>
 <version>5.2</version>
 <scope>provided</scope>
 </dependency>
</dependencies>

Shesmu provides all monitoring output via
Prometheus [https://github.com/prometheus/client_java]. All the infrastructure
is wired in, so simply building instruments and using .register() will add
them to the monitoring output.

General Principles

For all types of plugins in Shesmu:

	Shesmu is heavily multi-threaded, so plugins must be thread-safe. Locking is
permitted, but blocking should be avoided.

	Configuration is handled by the plugin and no configuration can be provided
by command line arguments.

	The Shesmu server has no state. Upon restart, a Shesmu instance has to
recover its state by reading in all the input data again and generating all
actions again through the olives.

Provided Utilities

The class AutoUpdatingDirectory provides a mechanism to scan for new
configuration files in the Shesmu data directory and update the files when they
change on disk. If the configuration is a JSON file, AutoUpdatingJsonFile is
a utility class for parsing the JSON files.

Types and Erasure

The correct handling of types in Shesmu is complicated. There are different but
interlocking type systems:

	The Java type system

	The JVM type system

	The Shesmu type system

	The JSON type system

Shesmu’s type system describe the types of every type that can be used in an
olive. Because the name Type is used by the ASM library, the library used by
Shesmu to generate JVM bytecode, Shesmu’s types are represented by Imyhat
objects (this is an Ancient Egyptian word for mould of conduct).

Java’s type system is similar to, but more sophisticated than, the JVM type
system. In particular, generic types in Java are erased on the
JVM [https://docs.oracle.com/javase/tutorial/java/generics/index.html].

Shesmu’s types are also erased in a way that is similar to Java’s. This matters
for Shesmu’s lists, which are Java’s Set underneath. Shesmu’s tuples are
erased to Object values. Although some of these JVM types may be null, Shesmu
olives cannot handle null values. If you need nullable values, use
java.util.Optional. Optional can be empty, but not null.

Name	JVM Type	Syntax	Signature
—	—	—	—
Integer	long / J	integer	i
Float	double / D	float	f
String	java.lang.String	string	s
Boolean	boolean / z	boolean	b
Date	java.time.Instant	date	d
JSON	com.fasterxml.jackson.databind.JsonNode	json	j
List	java.lang.Set	[inner]	ainner
Empty List	java.lang.Set	[]	A
Tuple	ca.on.oicr.gsi.shesmu.Tuple	{t1,t2, …}	t n t1 t2 Where n is the number of elements in the tuple.
Object	ca.on.oicr.gsi.shesmu.Tuple	{f1=t1,f2=t2, …}	o n f1$t1 f2$t2 Where n is the number of elements in the object. Fields must be sorted alphabetically.
Algebraic	ca.on.oicr.gsi.shesmu.AlgebraicValue	NAME	u1NAME$t0
Algebraic	ca.on.oicr.gsi.shesmu.AlgebraicValue	NAME {t1,t2, …}	u1NAME$t n t1 t2 Where n is the number of elements in the tuple.
Algebraic	ca.on.oicr.gsi.shesmu.AlgebraicValue	NAME {f1=t1,f2=t2, …}	u1NAME$o n f1$t1 f2$t2 Where n is the number of elements in the object. Fields must be sorted alphabetically.
Optional	java.util.Optional	inner?	qinner
Optional	java.util.Optional	nothing	Q
Dict	java.util.Map	k->v	m k v

If you require a type as part of your configuration, Imyhat can be serialised
and unserialised by Jackson with JSON-enhanced descriptors. See types in the
language description.

[bookmark: json]
In JSON documents, Shesmu types must be converted to the more limited types
available. Again, there is a type erasure, so the Shesmu Imyhat type is
necessary to convert a JSON document back into an interpretable format.

Name	JSON Type
—	—
Integer	number
String	string
Boolean	boolean
Date	number of milliseconds since epoch
List	array
Tuple	array
Object	object
Algebraic	object; see Algebraic Values without Algebra
Dict	object (if key is a string) or array of arrays containing key-value pairs

Writing an Input Format Plugin

Creating a new source format is meant to be easy, but convoluted in order to be
type safe. To create a new source format:

	Create a class, V, that will hold all the data for a “row” in the incoming
data. It must be a class and not an interface.

	Create a parameterless method in V for every variable to be exposed. The
method names must be valid Shemsu names (lowercase with underscores) and
decorated with @ShesmuVariable annotations with the correct type descriptor. All
methods must return boolean, long, String, Instant, Set, or Tuple
(and Set and Tuple may only contain more of the same).

	Create a new class that extends InputFormat<V> and
provides the types to the constructor as well as a name that will be used in
the Input instruction. This class must be annotated with
@MetaInfServices(InputFormatDefinition).

For each variable, Shesmu can try to infer the type from the return type of the
method. If the type is Tuple or an erased Optional, Map, or Set, it
must be specified in the type property of the @ShesmuVariable annotation in
the type descriptor format.

By default, it will be possible to create files names with .name-input
that contains a JSON representation of the input format or .name-remote
containing a JSON object with two attributes url indicating where to download
the JSON representation and ttl indicating the number of minutes to cache the
input. Additionally, once a Shesmu server is active, it will provide the input
in the JSON format at /input/ followed by the input format name.

Variable Gangs

Variables in an input format can be attached to gang to provide
convenient grouping criteria. Please see the language reference
for the purpose and uses of gangs. In the @ShesmuVariable, set:

gangs = { @Gang(name = "useful_stuff", order = 0) })

Since a variable can be part of multiple groups, @Gang can be
specified multiple times. All variables using the same name will be bound to
the same group. When converting the group to a string or tuple, the order
determines the order for this variable. For example:

@ShesmuVariable(gangs = { @Gang(name = "group_a", order = 0) }))
public String foo();
@ShesmuVariable(gangs = {
 @Gang(name = "group_a", order = 1),
 @Gang(name = "group_b", order = 0)
 }))
public String bar();
@ShesmuVariable(gangs = { @Gang(name = "group_b", order = 1) }))
public String baz();

In this example {@group_a} would be equivalent to {foo, bar} and
{group_b} would be equivalent to {bar, baz}. In By clauses, the order is
irrelevant.

Writing a Grouper Plugin

Creating a new grouper is thorny since a lot of generic types are required. The
implementation-specific grouping logic is well-isolated from the rest of the
system. Effectively, the grouper is a service parameterised over two generic
type variables: I, the type of the input rows, and O, the type of the
output rows. These are opaque to the grouper and Shesmu will fill in the gaps
using the olive. The grouper may request that the olive provide data, of any
Shesmu-compatible type, and export extra values to the olive.

Groupers can take parameters from the olive and provide output variables. Both
of these can be fixed (the same across all rows) or dynamic (a function that
takes an input row as a parameter). There are a number of overrides and
super-constructors to handle different numbers of input and output variables.
The exact configuration will depend on what information the grouper requires.
It maybe easiest to implement the grouper and see what information is necessary
and then work backward to the grouper definition.

	Create a class G that implements Grouper parameterised over I and O.

	Create a class D that extends GrouperDefinition and is annotated with
@MetaInfServices.

	In D, call the appropriate super constructor. They vary by the number of
input parameters the grouper requires. Use GrouperParameter to fill in each
parameter required.

	In D, select a GrouperOutputs to use. This sets the number of variables
exported to the olive for each group.

	Create a constructor that fits in the pattern of input and outputs in G.

	Perform the grouping operation and create a Subgroup for each subgroup.

Note that a grouper will be reused arbitrarily many times by an olive, so do
not store any state in fields.

Writing a Plugin

Shesmu has many different systems that can be fed by plugins. Each plugin
requires two classes, a PluginFileType that defines the plugin itself and
PluginFile that is created for each matching configuration file discovered in
the Shesmu data directories.

As a general outline, for a plugin Foo, the two classes would be:

@MetaInfServices
public class FooPluginType extends PluginFileType<FooFile> {
 public FooPluginType() {
 super(MethodHandles.lookup(), FooFile.class, ".foo");
 }

 FooFile create(Path fileName, String instanceName, Definer definer) {
 return new FooFile(fileName, instanceName, definer);
 }
}

class FooFile extends PluginFile {
 FooFile(Path fileName, String instanceName, Definer definer) {
 super(fileName, instanceName);
 }
 public void configuration(SectionRenderer renderer) {
 // TODO: provide debugging output
 }
}

The class extending PluginFileType must have a public no-arguments
constructor.

The configuration method is displays configuration panels on the main status
page of the Shesmu server and are meant to report the configuration of a
plugin.

All plugin integration is provided by:

	overriding methods in PluginFileType

	overriding methods in PluginFile

	adding annotated methods in PluginFileType

	adding annotated methods in PluginFile

	using the Definer

A number of plugin features can be added to the PluginFileType or the
PluginFile. Anything placed in the PluginFileType will be a global
defintion. When Shesmu administrator creates configuration file, Shesmu will
spawn an instance of PluginFile to read that file. Any annotated methods
attached the PluginFile will be created per-instance. The name of the
configuration file will be included in the definition if it is created
per-instance.

Source Linker

Source linkers convert local paths for .shesmu files into URLs for accessing
via the action dashboard. To create a new source linker, override sourceUrl
in either PluginFileType or PluginFile.

Throttler

Throttlers temporarily block actions from starting. They can block actions and
olives by service names provided by plugins and these names are arbitrary
strings. To create a new throttler, override isOverloaded in either
PluginFileType or PluginFile.

Dumpers

Dumpers write intermediate values for debugging purposes.

	Create a class that implements Dumper. The stop() will be called at the
end, even if an exception occurs.

	Override findDumper in either PluginFileType or PluginFile.

Dumpers will get an array of values, one for each of the expressions provided
by the user, boxed as Object. They must unbox the objects appropriately for
themselves. The Imyhat type information can be used for this unboxing using
the apply and accept methods.

Constants and Functions

Olive can consume functions and constants from the outside world.

A constant is a value that can be generated with no input. It need not actually
be constant (e.g., now is a constant). The Shesmu compiler will arbitrarily
copy the value of a constant, so a constant should be side-effect free.

A function is a transformation of input data. It matches with a call to a
method. Since there is no user-defined error-handling, these functions should
not throw. Also, since Shesmu has no null values, they should not return null
when an error occurs.

There are three ways to create a constant or function:

	create a static method in PluginFileType decorated with @ShesmuMethod

	create a virtual method in PluginFile decorated with @ShesmuMethod

	use the Definer interface

Annotated Methods

In classes derived from PluginFileType or PluginFile classes, create a
method and add the @ShesmuMethod annotation. This method will now be exported
to Shesmu automatically. If the method takes no arguments, it will be exported
as a constant, otherwise as a function.

The method must handle Shesmu-compatible types. Shesmu will try to determine
the matching Shesmu type from the type information provided by the JVM. If it
cannot determine the correct type, it will throw an error. The correct type can
be provided using a Shesmu type descriptor in the type parameter of the
@ShesmuMethod for return types or by adding a @ShesmuParameter annotation
to any parameters. The @ShesmuParameter annotation can also provide help
text.

The name can be provided two ways: from the name of the method itself or fro
the name parameter of @ShemsuMethod annotation. If the name is associated
with a PluginFile class, it must contain a $ which will be replaced with
the name of the file. For instance, if the name of the method is $_items and
the file name is foo.bar, then the constant or variable will be available to
olives as foo_items.

The @ShesmuMethod annotation also has a description property that will be
shown in the definition page. In the description, {instance} and {file}
will be replace with the instance name and configuration file path,
respectively.

Using the Definer

The Definer can be used to create functions and constants. It can create as
many as desired and they can be updated or erased. For details, see the
Definer interface. The Definer interface has multiple versions of the same
methods for different needs.

	some methods take TypeGuarantee objects that ensure matching Java and
Shesmu types; some take Imyhat objects directly and casting is done. If the
types are incorrect, runtime errors will occur

	constants can be defined with fixed values or with a Supplier that produces
the value when necessary

	functions with a fixed number of arguments can be supplied using Java’s
Function and BiFunction interfaces

	functions with an arbitrary number of arguments can be defined using the
VariadicFunction interface. All arguments are provided as an array of
Object

Actions

Actions have a complicated set of restrictions. Shesmu pushes a number of
questions about how actions work onto the plugin.

Actions are created by the olives as necessary and put in a large set to be
processed. When an action is created, arbitrary data can be stored in the
action via the constructor (or methods called after construction). This allows
an action to have “secret” knowledge not provided by the olive, such as the URL
of remote service that should perform the action.

All of the data provided in the With block is done after the action is
created. Once all the data is loaded into the action, it is put into the set.
The set deduplicates actions from olives based on their hashCode and equals
method. Since the same olive will regenerate the same action many, many times
during the life of a Shesmu server instance, the deduplication must work
properly to decide that two actions with the “same” parameters are identical.
Which parameters must be considered for two actions to be identical is entirely
chosen by the implementer.

When the system is going to perform actions, it sorts them by how long it has
been since the Action was last checked, an Action’s priority
(smaller numbers are higher
priority), and prioritizes Actions in certain ActionStates. If two
actions are going to use the same
resource, then priority is a good way to allocate the resource to the most
appropriate action. Since new actions are being generated constantly, priority
inversion may occur. An item can also return a different priority over its life.
A plugin may choose to expose priority as an @ActionParameter so it can be
set procedurally by an olive. (See ‘Action Parameters’)

At some point, an action will be given time to perform. There is a limited CPU pool
for actions to run in, so blocking is strongly discouraged. An action should
always start its perform method with:

if (services.isOverloaded("x", "y", "z")) {
 return ActionState.THROTTLED;
}

where x, y, and z are service names this action should throttle on. These
might come from the service configuration (e.g., for a JIRA project ABC, the
JIRA ticketing action will throttle on jira and ABC).

After running, it must return an ActionState to indicate its current status.
If the action throws an exception, it will be caught, reported, and given
ActionState.UNKNOWN.

The meaning of each ActionState is defined in the enum’s documentation. The
perform method will be called periodically until SUCCEEDED is returned. If
any other value is returned, the action will be retried later. The scheduler
will wait until at least retryMinutes() minutes have elapsed before trying
again.

When queried by the user, an action can return a JSON representation. This is
arbitrary and entirely for the benefit of users. Any information can be
included in an appropriate way.

To create an action:

	Create a class A that extends Action.

	It must provide a unique JSON action type to the superconstructor that will be available for searching via the REST API and the action dashboard. (e.g., jira-open-ticket, nothing, fake)

	Override all the methods for the desired behaviour as described above.

To deliver an action to olives using PluginFileType or PluginFile:

	Create a static method in PluginFileType or a virtual method in PluginFile that return A

	Annotate this method with @ShesmuAction.

	Name this method with a Shesmu-compatible name or set the name property in
the annotation. If the name is associated with an instance, it must contain
a $ which will be substituted for the instance name.

	Return a new instance of A from this method.

To deliver an action to olives using a Definer:

	Call the defineAction method. This must take A.class, a
Supplier<A> and additional parameters.

It is very important to use A and not Action, since this type information
is used to discover the properties of the action.

For details on the parameters to an action, see the Action Parameters section.

These two methods are a bit different in how they operate:

	@ShesmuAction will create one instance per plugin configuration (or one globally, if on PluginFileType)

	Definer will dynamically create as many action definitions as requested

For instance, the SFTP plugin allows creating file deletion commands. There’s
only one way to delete a file and each plugin is connected to one remote
server, so it is in a method that creates one action on PluginType, resulting
in one action definition per instance.

On the other side, the Vidarr plugin will scan the available workflows on the
Vidarr server listed in its configuration and create one action definition for
each workflow version. The Definer allows creating custom parameters, so in
the case of creating actions for Vidarr workflow, some parameters are baked
into the Vidarr submit action, but many are also dynamically created from the
information provided by the Vidarr server.

A plugin can freely create both kinds of actions. In fact, the Vidarr plugin
has fixed unload actions and dynamically creates actions for workflows.

Typically, dynamically created actions need extra information, so the Definer
can capture extra information needed by the action’s constructor as part of the
Supplier.

Action Parameters

An action needs to take some data from the Shesmu olive. Since the number of
parameters an action might require can be very large, they are not passed to
the constructor. Instead, Shesmu will create a new action instance, populate it
with data from the olive (in an arbitrary order), and then send the action on
to the scheduler. This works a bit like Jackson deserialization or Hibernate
mapping, where an empty object is created and then populated from the data
being loaded. There are multiple methods to import data from an olive:

	Put data in a field or setter method using the @ActionParameter annotation.

	Put data in a JSON object using the @JsonParameter annotation. A must extend JsonParameterisedAction.

	Put data in a JSON object using the JsonParameter class and a Definer. A must extend JsonParameterisedAction.

	Use the CustomActionParameter class and a Definer.

When using the @ActionParameter annotation, it may be applied to any field or
virtual method taking one argument and returning void. The type will be
determined from the Java type where possible. If not possible, use the type
attribute of the annotation to provide the Shesmu type descriptor.

When using the @JsonParameter action, multiple annotations can be applied to
the class. The class must extend JsonParameterisedAction which returns an
ObjectNode into which the parameters will be written. The type information
must be provided in the annotation.

Both of these methods created a fixed number of parameters for an action. If
the parameters cannot be determined ahead of time, then the Definer provides
a way to connect an arbitrary set of parameters to an action. When using the
definer, any parameters defined by the annotations are also used.

To define a parameter, the CustomActionParameter class provides a method to
write the parameter into the action. JsonParameter is an implementation that
writes parameters back as JSON values if the action extends
JsonParameterisedAction.

Refill

Refill olives write the output to an external store. This is similar to a
dumper, but the dumper must accept any data format given to it, while the
refiller gets to decide the schema, much like an action. Refillers are designed
to allow an olive to upsert or overwrite data in a tabular database. The
parameters provide the column values and the nature of olives will deliver a
list of entries.

To create a refiller:

	Create a class F<T> that extends Refiller<T>. T is the input row
type and will be used throughout.

	Decide on the schema and set up parameters to collect the readers.

	Implement the consume method that uses the readers to consume the data in
the provided input stream.

When an olive uses the refiller, a new instance of the refiller will be
created. Just as olives populate actions with parameter values, actions
populate refillers with parameter functions and a stream of values. The
functions can be used to extract the appropriate columns on each incoming
stream. Any olive has a different internal data format, so the refiller cannot
know the types of these values; it must deal with arbitrary types and the olive
will provide it with the functions it requires to manipulate that type.

To deliver a database to olives using PluginFileType or PluginFile:

	Create a static method in PluginFileType or a virtual method in PluginFile, parameterized by <T>, that return F<T>. The returned type is used to discover parameters, so it must the be the correct subtype.

	Annotate this method with @ShesmuRefill.

	Name this method with a Shesmu-compatible name or set the name property in
the annotation.

	Return a new instance of F from this method.

To deliver a database to olives using a Definer:

	Call the defineRefiller method. This must take an implementation of RefillerDefiner which returns an implementation of RefillerInfo. These interfaces are there to ensure type safety.

	The RefillerInfo interface returns F.class, which is used to discover parameters, so it must be the correct subtype.

	The RefillerInfo interface must return stream of non-annotated parameters.

Refiller Parameters and Readers

A refiller will receive an object for each row from the olive. To extract the
column values for each row, a Function<T,C> or reader is supplied by the
olive. C is the type determined by the refiller, but T is the type of the
row and determined by the olive. The refiller implementation may make no
assumptions about T. There are multiple ways to accept readers:

	Create a public field of type Function<T,C> annotated with
@RefillerParameter. The name of the field will be used unless name is set
in the annotation.

	Create a public method that takes a single argument of type
Function<T,C> annotated with @RefillerParameter. The name of the method
will be used unless name is set in the annotation.

	Create a subclass of CustomRefillerParameter that defines the name and
type of the parameter and provides a mechanism to store it in the database.

When using @RefillerParameter, Shesmu will attempt to determine the correct
type from the annotation; raw types (i.e. Function) are not allowed. T
must be the first parameter type to Function. If the Shesmu type of C
cannot be determined automatically, the type property of the annotation must
be set.

Signature Variables

Signature variables are special variables that compute some kind of record
based on the input variable used by an olive.

There are two categories of signature variables: ones that are static (i.e.,
the same for all inputs) and ones that vary for each input.

This might seem a contradiction, but the static case is useful for things that
depend only on the names and/or types of the signable variables. This is how
the signable_names works.

To create a signature variable:

	Create a class that extends StaticSigner or DynamicSigner.

	Implement the addVariable method to compute a value. If static, no input is
provided. If varying for each record, the input will be the only argument to
the method.

	Implement the finish method to produce a value.

Signatures can be made available to olives by:

	Adding a static method decorated with @ShesmuSigner to PluguinFileType
which returns StaticSigner or DynamicSigner.

	Adding a virtual method decorated with @ShesmuSigner to PluguinFile
which returns StaticSigner or DynamicSigner.

	Use Definer.defineStaticSigner with a Supplier that returns new static
signers.

	Use Definer.defineDynamicSigner with a Supplier that returns new dynamic
signers.

When using the @ShesmuSigner attribute, the Shesmu type descriptor must be
provided in the type parameter for the type that is returned with the
finish() method is called. The name of the signature will be taken from the
method name or it can be provided using the name parameter of the annotation.
If the method is attached to PluginFile, the name must contain a $ which
will be replaced by the instance name.

Input Sources (Direct)

Plugins may provide data for each input format. A data format must already
exist. Suppose the type of the format is T. To add a source of data:

	Create a static method in PluginFileType or a virtual method in
PluginFile. It must take no arguments or one boolean argument and it
must return Stream<T>.

	Add the @ShesmuInputSource to this method.

The method may also return a subclass of T, but not a wildcard (e.g.,
Stream<? extends T>).

The Shesmu server will call the @ShesmuInputSource in different situations,
including at the start of olive execution, and when a simulator request
is made. Different situations have different needs with regards to how
fresh the input data should be.
The boolean argument, if included, is sent by the Shesmu server to
indicate to the plugin whether
the fetch should trigger a refresh. If true, the server has indicated that
it needs fresh data. If false, the server is happy to
receive data cached from a previous fetch and the input source is
free to not make the effort to refresh it.

Input source data is not cached by the server between calls to the
@ShesmuInputSource method. Caching data is the plugin’s responsibility.
The Shesmu plugin API package provides ValueCache and implementations
for assisting with this task.

Input Sources (JSON)

Shesmu will automatically create a JSON representation for every input format
that can be accessed via /input/format. Since Shesmu already knows how to
demarshall data in this format, it is possible to provide data as a stream of
bytes and leave Shesmu to extract the data from the JSON representation.

There are two ways to do this:

	using a method on a PluginFile or PluginFileType

	using Definer.defineSource

Ensuring the stream contains correctly encoded data is left to the plugin.
Corrupt data will be discarded.

Streaming JSON Using a Method

To provide a stream of JSON data:

	Create a static method in PluginFileType or a virtual method in
PluginFile. It must take no arguments and it must return
java.io.InputStream or a subtype. It may throw any exceptions.

	Add the @ShesmuJsonInputSource to this method. Set format to the name of
the format, and, optionally, ttl to adjust the cache time (in minutes).

Stream JSON Using a Definer

Using a definer will allow registering sources of JSON data dynamically. Many
sources of the same data type can be sent and Shesmu will concatenate all of
them.

To add a source, call Definer.defineSource(n, t, s) where _n_
is the name of the format, (e.g., "cerberus_fp"), and t is the TTL for
the cache in minutes and s is a function which provides a
java.io.InputStream. It is permitted to throw.

Sources can be removed using Definer.clearSources(n) to remove any
associated with a particular format or Definer.clearSources() to clear all
formats.

 Shesmu Decision-Action Language Reference

Shesmu Decision-Action Language Reference

A Shesmu script contains:

	a version

	an input declaration

	pragmas if required

	type aliases if required

	constants and functions

	define olives

	olives

The version can determine what language features are available and provides a
mechanism to change syntax in the future. Currently, only one version is
supported.

Version 1;

The input declaration determines the input format that will be read by olives
in the file. This is the only required entry in a file.

Input format;

Pragmas modify the behaviour of the entire script, mostly to do with when it
will execute.

Constants and functions are automatically imported from plugins and other files
but can also be defined locally.

Olives then process the input data. Define olives are a reusable set of olive data.

Olives, define olives, functions, and constants may be mixed in any order.

Pragmas

After the Input line, various script modifiers can be added.

Imports

	Import qname;

Access any qualified name by the final section (i.e., Import std::string::to_path; will make to_path the same as std::string::to_path).

	Import qname As name;

Access a qualified name by a custom name (i.e., Import std::string::to_path As pathify; will make pathify the same as std::string::to_path).

	Import qname::{ name1 [As name1P] [, name2 …]};

Perform multiple of the above access patterns at once. That is:

Import std::string::{length As strlen, to_path};

is equivalent to:

Import std::string::length As strlen;
Import std::string::to_path;

	Import qname::*;

Access all children of a qualified name (i.e., Import std::string::*; will
make to_path the same as std::string::to_path, length the same as
std::string::length and so on).

Timeouts

	Timeout integer ;

Stop the script after integer seconds. The usual integer suffixes, especially
minutes and hours can be added here. When a script runs over its time
budget, the Prometheus variable shesmu_run_overtime will be set.

Frequency

	Frequency integer ;

Run the script every integer seconds. The usual integer suffixes can be used, where seconds
is the default and others such as minutes and hours can be used.

Required Services

	RequiredServices service1 [, service2, …] ;

Ensures that the olive will only run if the specified services are not
throttled. Multiple services are separated by a comma.

Data Checks

	Check format Into name = collector Require expr;

This prevents the script from running based on input data. It takes all the
input data from the format format and sorts it into one giant group using
collector to aggregate the records. Once done, it evaluates expr with
name defined to that aggregate value. If expr is true, the script can run;
otherwise, it will be blocked.

This can be useful to require temperamental data sources to have provided input:

Check unix_file Into c = Count Require c > 0;

Type Aliases

Since tuple types can get unwieldy, a type alias can be created:

TypeAlias name type;

This will make name available in all the places where types are permitted.
Note that all the variables are already available as variable_type.

Top-level Elements

These are the olives, functions, and constants. Define olives, functions,
constants, actions, refillers, and gangs are in separate namespaces, so it is
possible to reuse the same name for any of these without an error.

	[Export] name = expression ;

Creates a new constant. The name cannot be used for any other constant. If
Export is present, this constant will be available to other scripts as
olive::script::name.

	[Export] Function name(type1 arg1[, …]) expr;

Create a new function. The function must take at least one argument. The
possible types are defined below. If
Export is present, this constant will be available to other scripts as
olive::script::name.

	[Export] Define name([type1 arg1[, …]]) clauses ;

Create a new define olive. This is a section of olive that can be reused among
different olives in the file. It is intended for when olives share similar
logic. The define olive cannot be used after reshaping has been done, so it
must occur early in the olive. If reshaping is required, write the define
olives in a nested way.

Parameters are optional.

	Olive [Description "info"] [Tag tagname1 [Tag tagname2 …]] clauses terminal ;

Create a new olive that does something. The something is determined by
terminal. Olives have optional descriptions and tags which will be displayed
in the UI. For olives that produce actions, any tags will be added to the
action and can be used for filtering.

Olive Terminals

Terminals determine what an olive will do.

	Run action tags With param1 = expr1[, param2 = expr2[, …]];

Creates action to be scheduled and run. action determines which action will
be run what what parameters are available. Optional parameters can be
conditionally assigned:

param = expr If condition

Tags can also be attached to the action. These tags, unlike the ones at the
start of the olive, are dynamically generated. This makes it possible to create
tags based on the data. For instance, to tag action by project/customer. See
Dynamic Tags.

	Alert label1 = expr1[, label2 = expr2[, …]] [Annotations ann2 = aexpr1[, …]] For timeexpr;

Creates a Prometheus alert. According to Prometheus’s design, an alert is
defined by its labels, all of which must be strings. For additional data that
might change, use Annotations, which are also string-valued. An alert has a
finite duration, after which it will expire unless refreshed. timeexpr
defines the number of seconds an alert should fire for. Every time the olive is
re-run the alert will be refreshed.

This may be used in Reject and Require clauses.

	Refill refiller With With param1 = expr1[, param2 = expr2[, …]];

Replace the contents of a database with the output from the olive. Each record
the olive emits is another “row” sent to the database. How the refiller
interprets the data and its behaviour is defined by the refiller.

[bookmark: dynamictags]
Dynamic Tags
Tags can be attached to an action based on the data in the olive. They can be
any string. Duplicate tags are removed.
	Tag expr

Adds the result of expr, which must be a string, to the tags associated with
this action.

	Tags expr

Adds the elements in the result of expr, which must be a list of strings, to
the tags associated with this actions.

 Using Olive Features Together

Using Olive Features Together

Shesmu has a lot of features that can be stacked to do complicated things
compactly. These are examples not necessarily meant to templates, but general
ideas with a dissection of why.

Selection of Multiple Output

The goal here is to select the “best” output from a workflow. Older versions of
the workflow produced one file in a unhelpful format. The new one produces two
files: a useful format and the historic unhelpful one. The goal is to pick the
best format for newest run of this workflow.

Input cerberus_fp;
Olive
 Where workflow == "The Workflow Of Interest"
 && (metatype == "application/json"
 || metatype == "application/zip-report-bundle")
 Group
 By ius, workflow_accession
 Into
 outputs = List {accession, path, metatype},
 timestamp = Max timestamp
 Pick Max timestamp By ius
 Let
 ius = ius,
 {accession, path, metatype} = OnlyIf
 For {accession, path, metatype} In outputs:
 Sort (If metatype == "the good format" Then 0 Else 1)
 First {accession, path, metatype}
 Run whatever With
 {run, lane, barcode} = ius,
 accession = accession,
 path = path,
 metatype = metatype;

Here is the clause-by-clause breakdown. First, we select only the workflows and
file types of interest:

 Where workflow == "The Workflow Of Interest"
 && (metatype == "application/json"
 || metatype == "application/zip-report-bundle")

Then, we group based on each IUS (library that was sequenced) and workflow run:

 Group
 By ius, workflow_accession

And we collect two things from each of these per-workflow-run groups: the
newest file time-stamp and a collection of all the file SWID, path, and file
metatype tuples. This outputs list will contain all the files produced by the
workflow; presumably either one (the unhelpful format) or two (the unhelpful
format + the useful one):

 Into
 outputs = List {accession, path, metatype},
 timestamp = Max timestamp

Now, select the latest edition of this workflow run:

 Pick Max timestamp By ius

This is the most complex step which select the best file and throws away the other, if it exists.

 Let
 ius = ius,
 {accession, path, metatype} = OnlyIf
 For {accession, path, metatype} In outputs:
 Sort (If metatype == "the good format" Then 0 Else 1)
 First {accession, path, metatype}

Let’s break this down further. The first part simply reshapes the data preserving the IUS:

 Let
 ius = ius,

We will continue on slightly out of order:

 For {accession, path, metatype} In outputs:

This iterates over all the output we collected. This uses destructuring to get
the contents of the tuple at the time of iteration. We need to find the “best”
file. The plan is to sort the tuples from best to worst and pick the first one:

 For {accession, path, metatype} In outputs:
 Sort (If metatype == "the good format" Then 0 Else 1)
 First {accession, path, metatype}

This uses the numeric sort operation to place the better format before the
worse one (if both exist) and First to select whatever item has the best sort
criterion. First will emit another tuple. It’s in exactly the same format as
the original tuple, so this could be written as:

 For output In outputs:
 Sort (If output[2] == "the good format" Then 0 Else 1)
 First output

with no change in meaning. First cannot guarantee that there are any items in
the list at all, so it will return an optional of the tuple. Since we only want
rows where there is one file, we use OnlyIf:

 {accession, path, metatype} = OnlyIf
 For {accession, path, metatype} In outputs:
 Sort (If metatype == "the good format" Then 0 Else 1)
 First {accession, path, metatype}

This will discard any rows with no files matching our criteria. At the same
time, it does a destructuring assignment, unpacking the contents of the tuple
in the variables.

Finally, we run the intended action:

 Run whatever With
 {run, lane, barcode} = ius,
 accession = accession,
 path = path,
 metatype = metatype;

This also makes use of destructuring assignment for the IUS. Again, with no
practical different, the ending could have been written:

 Let
 ius = ius,
 output = OnlyIf
 For output In outputs:
 Sort (If output[2] == "the good format" Then 0 Else 1)
 First output
 Run whatever With
 run = ius[0],
 lane = ius[1],
 barcode = ius[2],
 accession = output[0],
 path = output[1],
 metatype = output[2];

or:

 Let
 ius = ius,
 output = OnlyIf
 For output In outputs:
 Sort (If output[2] == "the good format" Then 0 Else 1)
 First output
 Run whatever With
 {run, lane, barcode} = ius,
 {accession, path, metatype} = output;

Match Checking

Shesmu has three major ways to control program flow: If, Switch and For.
For is useful for collections and optionals. If and Switch are both
useful for decision making.

Since Switch works on tuples, it is possible to create decision-making flow that looks more like “matching” the desired data. This is a clause from the MAVIS olive:

Where
 project In miso_active_projects
 && library_design In ["WG", "WT", "MR"]
 && tissue_type != "R"
 && (Switch {workflow, metatype}
 When {"BamMergePreprocessing", "application/bam"} Then True
 When {"BamMergePreprocessing", "application/bam-index"} Then True
 When {"Manta", "text/vcf"} Then True
 When {"StructuralVariation", "text/vcf"} Then True
 When {"StarFusion", "text/plain"} Then "{path}" ~ /\.abridged\.tsv$/
 Else False)

This initial selection on project, library_design, and tissue_type is
pretty standard. The Switch is not. Let’s start with an equivalent logical
expression and refactor it into the above:

Where
 project In miso_active_projects
 && library_design In ["WG", "WT", "MR"]
 && tissue_type != "R"
 && (
 workflow == "BamMergePreprocessing" && (metatype == "application/bam"
 || "application/bam-index") ||
 metatype == "text/vcf" && (workflow == "Manta" ||
 workflow == "StructuralVariation") ||
 worfklow == "StarFusion" && metatype == "text/plain"
 && "{path}" ~ /\.abridged\.tsv$/)

This check is very ragged: in the case of BamMergePreprocessing, we care
about different metatypes while for the metatype text/vcf, we care about
different workflows. Let’s distribute those conditions. This will mean
redundant checks, but it will be clearer what the combinations are:

Where
 project In miso_active_projects
 && library_design In ["WG", "WT", "MR"]
 && tissue_type != "R"
 && (
 workflow == "BamMergePreprocessing" && metatype == "application/bam" ||
 workflow == "BamMergePreprocessing" && metatype == "application/bam-index" ||
 workflow == "Manta" && metatype == "text/vcf" ||
 workflow == "StructuralVariation" && metatype == "text/vcf" ||
 worfklow == "StarFusion" && metatype == "text/plain"
 && "{path}" ~ /\.abridged\.tsv$/)

Now, all of our conditions have a check for workflow and metatype where the
last one has an extra check. Rather than compare two things, lets put them into
tuples and compare the tuples:

Where
 project In miso_active_projects
 && library_design In ["WG", "WT", "MR"]
 && tissue_type != "R"
 && (
 {workflow, metatype} == {"BamMergePreprocessing", "application/bam"} ||
 {workflow, metatype} == {"BamMergePreprocessing", "application/bam-index"} ||
 {workflow, metatype} == {"Manta", "text/vcf"} ||
 {workflow, metatype} == {"StructuralVariation", "text/vcf"} ||
 {worfklow, metatype} == {"StarFusion", "text/plain"}
 && "{path}" ~ /\.abridged\.tsv$/)

Since {workflow, metatype} is now in every condition, we can factor it out into the Switch:

Where
 project In miso_active_projects
 && library_design In ["WG", "WT", "MR"]
 && tissue_type != "R"
 && (Switch {workflow, metatype}
 When {"BamMergePreprocessing", "application/bam"} Then True
 When {"BamMergePreprocessing", "application/bam-index"} Then True
 When {"Manta", "text/vcf"} Then True
 When {"StructuralVariation", "text/vcf"} Then True
 When {"StarFusion", "text/plain"} Then "{path}" ~ /\.abridged\.tsv$/
 Else False)

For most of the conditions, everything is taken care of by the Switch to the
result is simply True. For the StarFusion case, the extra conditions
becomes the Then.

Here is another case of this from bcl2barcode. It manipulates the bases mask
to replace the first Yn with Y1N*, and any subsequent Y with N while
leaving the first two I untouched.

Function modify_bases_mask(masks_type bases_mask_parts)
 pack_bases_mask(
 For mask In bases_mask_parts:
 Flatten (new_mask In
 Switch {mask.type, mask.ordinal}
 When {"Y", 0} Then
 [{ type = "Y", position = 0, group = mask.group, length = 1 },
 { type = "N", position = 1, group = mask.group, length = -1 }]
 When {"I", 0} Then
 [convert_mask(mask)]
 When {"I", 1} Then
 [convert_mask(mask)]
 When {"Y", 1} Then
 [{ type = "N", position = 0, group = mask.group, length = -1 }]
 Else
 # unsupported bases_mask!
 [convert_mask(mask)]
)
 List new_mask);

The bases_mask_parts is a list of objects already parsed by another function.
pack_bases_mask creates a new bases mask from the objects provided. Since the
parser provides extra information the packer doesn’t need convert_mask, drops
the superfluous data.

This code takes each mask and does a Flatten on it. The mapping between old
input masks is usually 1:1, but in the case where Yn maps to Y1N*, it is
1:2, so the Flatten will allow collecting the two. Again, this uses a
Switch on a tuple. The tuple is the mask type (Y, I, N) and the ordinal
(the number of this type appears in the sequence. So, {"Y", 0} is the first
read, {"I", 0} is the first index, {"I", 1} is the second index, and {"Y", 1} is the second read. This assumes a relatively normal read structure for the
sequencer. If other reads or indices were common, it might make sense to have
the Else convert them to an N* sequence as the {"Y", 1} case does.

 Training Guide for Operators

Training Guide for Operators

This is a guide for operators who need to check whether Shesmu is healthy and
investigate failures.

Pages

The main pages operators are going to use are:

	Status:

	Check for server uptime

	Check server version

	Use the STOP ALL ACTIONS emergency override

	Alerts (in conjunction with Prometheus Alert Manager):

	Explore and find patterns in alerts

	Display permalinks to alerts

	Alerts cannot be silenced here; use the Prometheus Alert Manager dashboard

	Actions:

	Use the Pipeline Lead Dashboard to monitor server state

	Find related actions across olives (e.g., search by run)

	Do maintenance on actions (e.g., skip and rerun)

	Olives:

	Find actions related to an olive

	Do maintenance on actions (e.g., skip and rerun)

	Investigate dataflow problems (e.g., missing records)

Using Filters Effectively

On both the Olives and Actions page, you can add filters to narrow the
list. There are a few kinds of filters:

	action IDs

	action types

	source olives (only on Actions page)

	status

	text and regular expressions matches

	time ranges and time horizons

Text and regular expression searches are much slower than the other filter. Try
to use tags where possible and add tags to olives for better searching. When
possibly try to combine text searches with other faster searches to improve
performance. Using the Olives page for is also faster because it narrows the
search to a single olive’s output.

On the Overview tab, there is a breakdown of actions (this applies even on
the Olives page where the filters are under the Actions tab). By clicking
on any cell header or cell in the tables, the search can be restricted using
the Drill Down menu item.

For the histograms, clicking and dragging will filter on that range. Histograms
can provide a lot of useful information about what is going on in an olive. For
instance:

[image: _images/ops-histo-orphan.png]Histogram showing changed data

In this histogram there are a number of actions that haven not been generated
by an olive recently. This likely means that the input data changed and these
actions are now orphans and may be candidates to be purged. The larger the gap
between now and the last time they were generated, the more likely it is that
they are not being generated. The Olives page would show when this olive last
ran for comparison.

Exercise: Go to the Actions page, find an action, and open it in a new tab.
Using the Actions and Olives page, find 3 different filter combinations
that find this action using the information displayed about it.

Custom Searches

When you build up a search query using filters on the Actions page, it can be
saved using the Add to My Searches button. This search will now be available
from your browser for this server.

If you want to share a search click on the Export Search button. If the
search is exported to a file, it can be added to the server’s configuration to
make available to all users. The To Clipboard, To Clipboard for Ticket, and
To File are all useful for importing the search later. There are also buttons
to create purge or fetch shell commands, for use in scripts. The JIRA plugin
also allows exporting searches to tickets; more details on that in the next
section.

Understanding Delegation

Shesmu can use JIRA and custom searches to create delegation. A JIRA ticket can
contain a search in text form (i.e., shesmusearch:) or references to
particular actions (i.e., shesmu:) in the description.

In the JIRA configuration, we have JIRA queries as follows:

"searches": [
 {
 "filter": {
 "states": [
 "FAILED",
 "UNKNOWN",
 "HALP"
],
 "type": "status"
 },
 "jql": "project IN (\"GC\", \"GDI\", \"GP\", \"GBS\", \"GRD\") AND resolution = Unresolved",
 "name": "Problems from {key} - {summary} ({assignee})",
 "type": "EACH_AND"
 },
 {
 "filter": {
 "states": [
 "FAILED",
 "UNKNOWN",
 "HALP"
],
 "type": "status"
 },
 "jql": "project IN (\"GC\", \"GDI\", \"GP\", \"GBS\", \"GRD\") AND resolution = Unresolved",
 "name": "Problems for {assignee}",
 "type": "BY_ASSIGNEE"
 },
 {
 "filter": {
 "states": [
 "FAILED",
 "UNKNOWN",
 "HALP"
],
 "type": "status"
 },
 "jql": "project IN (\"GC\", \"GDI\", \"GP\", \"GBS\", \"GRD\") AND resolution = Unresolved",
 "name": "Pipeline Lead Dashboard",
 "type": "ALL_EXCEPT"
 },
 {
 "filter": {
 "states": [
 "FAILED",
 "UNKNOWN",
 "HALP"
],
 "type": "status"
 },
 "jql": "project IN (\"GC\", \"GDI\", \"GP\", \"GBS\", \"GRD\") AND resolution = Unresolved",
 "name": "Problems Currently Handed-Off",
 "type": "ALL_AND"
 }
],

Each of these searches performs a JIRA search using "jql" to find searches
embedded in issues and then takes the Shesmu search in "filter" and combines
them using "type". So, the EACH_AND type takes every ticket and creates a
search for it by combining the query in this file with the query from the
ticket. BY_ASSIGNEE does the same thing, but first grouping by ticket
assignee. The ALL_EXCEPT search is the most important for operations. It
creates a dashboard that has all the problems except for ones mentioned in
tickets. Therefore, operations can carve off problems and delegate them to
other people by creating at ticket.

Tickets can be made by using the filters and then exporting the problem to a
new ticket. It does not need to be assigned to be removed from the Pipeline
Lead Dashboard. This allows the Pipeline Lead Dashboard to act as the
operations inbox.

The page has to be refreshed to get the updated query from JIRA and the results
from JIRA are cached for 15 minutes.

Exercise: Find a problem using the Pipeline Lead Dashboard and create a
ticket for it.

To create a new ticket:

	Use the Actions page to search the set of actions you want.

	Switch back to the All Actions search; otherwise the search will include the Pipeline Lead Dashboard as a base.

	Click Export Search and click File Bug in GC or File Bug in GDI.

	You should be directed to a JIRA create issue page. Fill in the remaining details.

If there is already a ticket that you would like to attach the search to:

	Use the Actions page to search the set of actions you want.

	Switch back to the All Actions search; otherwise the search will include the Pipeline Lead Dashboard as a base.

	Click Export Search and click Copy to Clipboard for Ticket.

	Open the issue and edit the description.

	Paste the search filter on a separate line in the ticket.

Once a ticket is filed, refresh the Actions page and there will be a search
for each ticket with an embedded search and an aggregated search of every user.
Shesmu caches this information for 15 minutes, so the searches may not be
updated immediately.

It is also possible to extract the search from a ticket manually.

	Go to the Actions page.

	Click Import Search in the top left.

	Paste the shesmusearch: string into the box.

	Enter a descriptive name for this search.

	Click Add to My Searches.

This search will be visible in the drop down list only for you from this
browser for this Shesmu server. If you wish to share it for everyone, use
Export Search and then To File and install it in the Shesmu configuration
directory.

Throttlers and Schedules

Shesmu will stop running olives or checking on an action if there is a
potential overload. On the main page, STOP STOP STOP will cause all active
actions to slip into a THROTTLED state.

There are 3 kinds of throttles supported:

	per plugin/service throttles

	per data format throttles

	custom throttles

Per plugin/service throttles can stop a plugin and all the actions and olives
that use it. For instance, throttling jira will stop any olives that are
using the JIRA searches or any actions that file JIRA issues.

Every data format (e.g., cerberus_fp) can also be throttled and olives that
use this data will not run.

To engage a throttle, there are several ways:

	using a maintenance schedule: a file named throttle.maintenance contains a list of times to engage a throttle. These are useful for planned events, such as IT maintenance. There’s a graphical maintenance schedule editor.

	token bucket throttling: used to slow down access to services that overload easily. I’m looking at you, JIRA.

	Prometheus Alerts: used to throttle based on external conditions

Prometheus is the most flexible of the system. Prometheus rules monitor systems
and can stop Shesmu from accessing certain systems by firing AutoInhibit
alerts. Since it is useful to create these manually,
Somnus [https://github.com/oicr-gsi/somnus] can be used to manually create
limited-time inhibitions. Think of them as the reverse of a silence; stop the
problem for a limited window instead of ignoring it for a limited.

Typically, actions in a THROTTLED state don’t require any action. If an
action has been throttled for a very long time it may indicate that another
service is broken or stuck or a maintenance schedule is overwhelmed. It’s
usually best to check Prometheus for inhibition alerts.

Olive and Script Pauses

While fun, STOP STOP STOP is a blunt tool for stopping actions. Actions can
also be paused using the olives that generate them. On the Olives page, it is
possible to pause the actions generated by an olive or a file. Pausing an
olive does not stop the olive from running. It simply puts all actions
generated by the olive into a THROTTLED state.

Pauses can be created or removed from the Olives page and removed on the
Pauses page. The reason for having them in two places is this:

	You find a bug in an olive and pause that olive to stop making a mess.

	You fix the olive and replace the file on the Shesmu server.

	The new olive replaces the old olive and generates actions. Some of the
actions are different but some are the same.

	The modified olive is unpaused so the new actions run, but the overlapping
actions are still paused. The button to pause and unpause the olive is no
longer on the Olives page.

To avoid this problem, all pauses, even for olives that have been replaced are
available on the Pauses page and they can be cleared from there.

Action Maintenance

Every Shesmu action has:

	a state

	a last generation time (a.k.a. added)

	a last checked time (a.k.a. checked)

	a last state transition time (a.k.a. statusChanged)

	an external modification time (a.k.a. external; optional)

Every few minutes, Shesmu runs all the olives and they generate all the
actions. Since most actions are the same every time, the duplicates are thrown
away. The last generation time is the last time an olive produced this
action. If the action is a duplicate, it will still have an updated generation
time.

Once an action has been generated by an olive, it will enter an UNKNOWN state
and the Shesmu scheduler will try to run the action. Every time it does, it
will update the last checked time. When the action is checked, it can change
its state; if this occurs, last state transition time is also updated.

Therefore, an old last generation time means the olive has stopped producing
this action, the olive has been deleted, or the olive is stuck. An old last
checked time indicates the Shesmu scheduler is overloaded or the action is not
requesting frequent updates. An old last transition time indicates that the
problem is internal to the action.

The external modification time is some time that the action self-reports that
it thinks is useful. For Vidarr workflows, this is the last
modification time of the workflow run. JIRA actions show the last modification
time of the ticket they are associated with.

Actions also have commands that allow you to tell the action to do something.
Commands will cause an action to flip back to the UNKNOWN state. Some
commands can be applied in bulk. A command may require a confirmation before
executing and some dangerous commands require a puzzle to be solved before
working in bulk.

State	Description
——-	————-
FAILED	The action has been attempted and encounter an error (possibly recoverable).
HALP	The action is in a state where it needs human attention or intervention to correct itself.
INFLIGHT	The action is currently being executed.
QUEUED	The action is waiting for a remote system to start it.
SAFETY_LIMIT_REACHED	The action has encountered some user-defined limit stopping it from proceeding.
SUCCEEDED	The action is complete.
THROTTLED	The action is being rate limited by a Shesmu throttler or by an over-capacity signal.
UNKNOWN	The actions state is not currently known either due to an exception or not having been attempted.
WAITING	The action cannot be started due to a resource being unavailable.
ZOMBIE	The action is never going to complete. This is not necessarily a failed state; testing or debugging actions should be in this state.

SFTP Delete Actions

Files can be deleted from disk by the SFTP delete action. To have a human
review before deleting, the olive can set automatic = False and then a
command will be available for a human to approve the action. These actions
appear in the HALP state until they are approved.

Vidarr Actions

Vidarr actions have several important commands meant to replace access to the
command line:

	Delete and Purge: This will delete a workflow run that has failed or not
started. It will also remove the action.

	Reattempt Failed Workflow: Re-try a workflow run that has failed or not
started. If the parameters from the olive are different from the previous
attempt, the olive’s parameters will be used.

	Search Vidarr Again: Shesmu will scan Vidarr for a matching workflow runs to
find a match. If the workflow is succeeded, it will never check again. This
action triggers a rescan and is useful if workflow runs have been unloaded.

The Vidarr actions also generates some useful tags:

	vidarr-target:name: The target on the Vidarr instance.

	vidarr-workflow:name[/version`]: The workflow that this action will
run, both with and without the version.

	vidarr-state:[active|attempt|conflict|dead|finished|missing]:
The action uses a state machine while its communicating with Vidarr. This is
the current state of that machine.

	vidarr-attempt:count`: The number of times this workflow run has been
attempted.

Vidarr actions have a few states they can be in:

	FAILED – This can happen for a few reasons: the workflow itself failed,
Vidarr rejected the submission request, an internal error occurred tying to
launch the workflow.

	HALP – The workflow run has been previously run, but with incompatible
LIMS key versions. Correct LIMS or reprocess the workflow.

	QUEUED – The workflow is waiting to start the next phase.

	INFLIGHT – The workflow is running.

	WAITING – The workflow run is in between Vidarr phases.

	ZOMBIE – the workflow has input which is stale; normal procedures for
fixing stale records will eventually generate a non-stale version of this
action.

 The Mandatory Guide to Optional Values

The Mandatory Guide to Optional Values

Programming languages need to deal with missing information. Different
languages deal with this in different ways depending on their design and error
handling capabilities. Shesmu olives have no error handling capabilities, so
they use optional values to force olive programmers to contend with every case.

This can be a bit overwhelming and unfamiliar at first, so this guide aims to
explain Shesmu’s design and how to accomplish certain goals using its optional
types. If you’re familiar with Rust, Scala, ML, Elm, or Haskell, you are
probably familiar with their optional/maybe types and Shesmu’s work very
similarly. If not, the next section is for you.

Background

Programming languages often get put in two groups: dynamically typed and
statically typed. Dynamically typed languages including Python, PERL, Ruby, and
JavaScript. Statically type languages include C++, Java, C#, and TypeScript.

Fundamentally, the difference is where the type information is available. Consider:

 x + 3

In Python, we cannot be sure what the resulting type of this expression will
be. x might be a string or might be an integer or might be a floating point
number or might be an object with an operator overload for plus. With out
knowing what the value of x is, we cannot know the type. In fact, the
type isn’t even guaranteed to be the same if this is executed multiple times
with different values for x. In dynamic languages, values have types.

Now, consider the exact same code in C#: this expression must have a type.
x can only have one type and we have to contend with the cases above of
whether x is a string or integer or floating-point number or object with an
overload for plus. When the compiler is finished, x can only have one type
and the expression x + 3 will also have one type, no matter how complicated
the rules are. In static languages, expressions have types.

While neither of these systems are better than the other, there is an important
practical difference: a statically typed language can never have a type error
at runtime. Once the compiler has decided what the type is for x and
generated the correct code to generate x + 3, there is no way to stray from
that path. In a dynamic language, it is always possible for x to take on a
value which doesn’t work with + 3. Pedantic note: most static languages can
generate runtime type errors, but only at well defined unsafe conversion
operations.

In all of the above languages, there is a special value, null, that
represents missing data. In Java or C#, a variable that is of type String or
string, respectively, could be a string or it may be null. This is somewhat
confusing as it does not apply to all types; int can never be null in either
language. The things that can be done to a normal string cannot be done to
null. If a null is used in certain operations, it will generate a runtime
error. Much like dynamically typed languages can generate a runtime type error
anywhere, these languages, though statically typed, can generate a runtime null
value error anywhere.

Since Shesmu has no error handling, it requires the programmer to deal with all
missing values explicitly, as does Rust, ML, Elm, or Haskell.

Optional Types

The way that Shesmu prevents performing normal operations on missing values is
to make them a different type. In Shesmu, the integer type always has an
integer value while integer? will have either an integer value or a missing
value. Shesmu knows how to perform integer + integer, but has no rule to
perform integer + integer? in the same way it has no rule to perform json + integer or path + json.

Clearly, there is some relationship between integer and integer? since
integer? might be the same as integer in some cases. There are two
categories of conversion: from integer to integer?, called lifting, and
from integer? to integer, called lowering.

Lifting

Lifting is the process of creating an optional value. There are two ways to do
this: take a non-optional value and claim that it might be missing or create a
missing value.

Shesmu denotes optionals with backticks, wrapping them like quotation marks
around the expression to make optional:

`3`

Anything can be inside the backticks:

`foo(7) * y`

All that matters is the expression has some non-optional type.

To create a missing value, use empty backticks:

 ``

This leads to a bit of a problem. The empty backticks are a missing value, but
a missing what? A missing integer? A missing string? Shesmu figures this out
from context:

If something Then `3` Else ``

The Then and Else part of this If must have the same type, integer?.
When building an olive, you may see the type nothing show up; this is the
type of the missing value before Shesmu has matched it against something else.
Similarly, it has empty as the type for the empty list.

Lowering

Lowering is the process of taking an optional value and getting at the real
value that might be inside it. The first way is to provide a value to use in
the case where it is missing:

 x Default 0

This means: use the value x if it has something in it, otherwise, use 0.
Again, the default can be any expression:

 x Default approximate_x(y, z)

There may be no default value that is acceptable and the data needs to be
removed. This can be done using OnlyIf or Require.

OnlyIf can be used in Let clauses and Group collectors:

 Let a, b, d = OnlyIf c
 Group By a, b Into
 d = OnlyIf c

In the Let clause, if c is missing, the row is discarded, otherwise, the
type for d is a lowering of the original type. Similarly, in the Group
operation, the group will be rejected if c is missing and d will be the
lowered type of c.

Both of these cases silently drop data, which may be undesirable. The Require
clause provides a way for missing data to be reported:

 Require d = c
 OnReject
 Monitor missing_c "Number of records missing c." { a = a }
 Resume

This will perform the same lowering as Let with OnlyIf, but the rows with
missing values for c get one last examination by the Monitor clause before
being rejected. This block can contain Monitor, Dump, and Alert clauses
to notify the outside world appropriately.

Transformation

Sometimes, part of an olive needs to manipulate an optional value. That part may
not be the best or easiest place to do a lowering, so it is desirable to simply
manipulate the value, if there is one. This is where the ? operator comes in.
For example, :

`x? + 3`

In this expression x is an integer? and the ? operator lowers x in the
scope of the backticks. If x is a missing value, then the whole expression
will also be a missing value. Otherwise, the integer inside it, gets added to
three and the result is put back in an optional.

Multiple question marks can be used too. Let’s say x is path? and
foo(path) returns integer?:

`foo(x?)? / 3`

This will take x, if it has a path in it, call foo, take the result and, if
it has an integer in it, divide it by 3.

It’s important to remember that the backticks pin the context. Suppose we have
p which is path? and i which is integer? and we want to construct a
string with both of them:

 `"{p?} {i?}"`

If either p or i is missing, then there will be a missing result. Suppose
we want to always produce a string, but with a message if either is missing:

 "{ `"{p?}"` Default "missing" } { `"{i?}"` Default "missing" }"

There’s a lot going on, so let’s rewrite this as a block:

 Begin
 p_as_string = `"{p?}"`; # type is string?
 p_or_missing_text = p_as_string Default "missing"; # type is string
 i_as_string `"{i?}"`; # type is string?
 i_or_missing_text = i_as_string Default "missing"; # type is string
 Return "{p_or_missing_text} {i_or_missing_text}";
 End

For each of p and i we need to first convert them to a string to provide a
string default. If we wanted to apply path and integer defaults, then we could
apply them directly, but since we need to apply a string default, we must first
transform them to strings. Since they are optional, we cannot do that directly,
so we transform them to string?. Now, we can insert our default values and
then we can concatenate them into a larger string.

When dealing with these kinds of situations, as general strategies, try:

	using back ticks to “pin” the correct scope of what can be missing, then
apply ? inside

	break larger problems into smaller ones using Begin … End blocks

Notes for Programmers Familiar with Optional Types in Other Languages

Shesmu’s optional types are a bit modified from ones you have seen in other
languages. Nested optionals are not permitted (i.e., integer?? is not
allowed). The transformation syntax provided by the ? operator provides the
same functionality as both map and flat-map functions in other languages;
Shesmu will automatically pick the appropriate one for you.

 Shesmu Language Tutorial

Shesmu Language Tutorial

Shesmu takes a stream of information from Provenance and performs certain
tasks, called actions. The language defines what actions are to be run, and
the server takes care of scheduling and running tasks.

This document describes the language where the decisions and actions are
specified. The list of possible actions are provided externally.

Olives and Clauses

Each decision-action stanza is called an olive. There are two: define and
run.

First, we need to specify the type of information to be processed. All the
olives in a file share the same input format. At the top of the file:

Version 1;
Input cerberus_fp;

This doesn’t specify where the data comes from, but what kind of data will be
provided. Analysis provenance coupled with LIMS data is known as cerberus_fp.

Shesmu will find sources that can provide data in this format. Imagine this as
a large table: the columns will be variables available and the olive will
stream over the rows.

A run olive specifies an action to run if the conditions are met. For example:

Olive
 Where workflow == "BamQC 2.7+"
 Run fastqc With
 memory = 4Gi,
 input = path;

This will take all the input provenance and selects any run by the workflow
BamQC 2.7+ and then launch fastqc. The With portion sets all the
parameters. These are specific to the action.

Some parameters can be optionally specified:

Olive
 Where workflow == "BamQC 2.7+"
 Run fastqc With
 memory = 4Gi,
 input = path,
 bed_file = bedfile(study) If study In ["PCSI", "TEST", "OCT"];

The Where line is an olive clause. The clauses are: where, group, matches, and monitor.

[bookmark: group]A Group clause groups items in the stream to be de-duplicated based on
discriminators and other variables are grouped into collectors.

Olive
 Where workflow == "BamQC 2.7+"
 Group
 By project
 Into
 files = List path
 Run fingerprint With
 memory = 4Gi,
 input = files;

The grouping changes the stream. After the grouping, files will be a list of
all the path values for each project. Any other variables, (e.g.,
workflow) won’t be accessible since they weren’t included in the grouping
operation.

Sometimes, it’s desirable to create new columns with conditions. In particular,
it’s often useful to turn data of the form:

i	k	v
—	—	—
x	a	7
x	b	3
x	c	1
y	a	9
y	b	2
y	c	2

into

i	a	b	c
—	—	—	—
x	7	3	1
y	9	2	2

The Group operation can also be used to “widen” a table in this way:

Olive
 Group
 By project, library_name
 Into
 qc = Where workflow == "BamQC 2.7+" Univalued path,
 # Use the output file from BamQC as `qc`
 fingerprint =
 Where workflow == "Fingerprinting"
 Univalued path,
 # Use the output file from fingerprinting as `fingerprint`
 timestamp = Max timestamp
 # All scoped over project + library_name pairs
 Group
 By project
 Into
 chunks = List {library_name, qc, fingerprint}
 # Create a tuple for each interesting file for each library
 # in this project
 # And create on report per project
 Run project_report With
 memory = 4Gi,
 project = project,
 chunks = chunks;

If a value is missing (e.g., there’s no Fingerprinting workflow for a
library_name), there will be no output for that discriminator combination.
That is, partial matches are discarded.

During a Group operation, the “best” value might be appropriate, so the Max
and Min selectors can pick the highest or lowest integer or date value.

In total, the collectors in a Group operation are:

	List to collect all values into a list

	Flatten to collect all values into a list for existing lists

	Univalued to collect exactly one value; if none are collected, the group is
rejected; if more than one are collected, the group is rejected. It is fine
if the same value is collected multiple times.

	Max and Min to collect the most extreme value; if none are collected, the
group is rejected

	Count to count the number of matched rows

	PartitionCount which returns an object with two fields: matched_count
with the number of rows that satisfied the condition and not_matched_count
with the number that failed the provided condition

	Any, All, and None which check that a condition is satisfied for any,
all, and, none of the rows, respectively.

and Where clauses can precede any of these.

Univalued, Max, and Min can also take a Default to prevent the entire group
from being rejected:

Olive
 Group
 By project, library_name
 # All scoped over project + library_name pairs
 Into
 qc =
 Where workflow == "BamQC 2.7+"
 Univalued path Default "/dev/null",
 # Use the output file from BamQC as `qc`
 fingerprint =
 Where workflow == "Fingerprinting"
 Univalued path Default "/dev/null",
 # Use the output file from fingerprinting as `fingerprint`
 timestamp = Max timestamp
 Group
 By project
 Into
 chunks = List {library_name, qc, fingerprint}
 # Create a tuple for each interesting file for each library
 # in this project
 # And create on report per project
 Run project_report With
 memory = 4Gi,
 project = project,
 chunks = chunks;

Sometimes, it’s useful to change the data format of the discriminators. It’s
possible to reshape the data using Let, but it can be more convenient to do
that in the By clause:

Olive
 Where workflow == "BamQC 2.7+"
 Group
 By project, sequencer_run = ius[0]
 Into
 files = List path
 Run fingerprint With
 memory = 4Gi,
 input = files;

The grouping shown so far requires that the groups being produced are known
ahead of time. In some situations, it isn’t possible to know exactly which items
belong in which groups until all the data is available. For these situations,
groupers are available that can do complex subgrouping. The groupers are
plugins, so the groupers available can be seen on the running Shemsu server.

The always_include grouper can put a row into every subgroup. Suppose a
validation should be run for every workflow with the validation method
depending on the MIME type of the file. However, some workflows also generate
directories. The validator should also scan those directories, so the
directories should be assigned to every other MIME type created by the
workflow.

Olive
 Group
 By workflow
 Using always_include # This will be the grouper name
 # These are grouper-specific parameters that control
 # how the grouping works
 key = metatype,
 include_when = "inode/directory"
 # The grouper will not only create groups but can
 # provide additional information about the groups.
 # This additional information will be available with
 # the names `current_metatype` and `is_directory`. If
 # the `With` clause is omitted, the grouper will use
 # default names for these pieces of additional information.
 # For the `always_include` grouper, they are `group_key`
 # and `is_always`.
 With current_metatype, is_directory
 Into
 files = Where !is_directory List path,
 validator = Univalued validator_for_metatype(current_metatype),
 directories = Where is_directory List path
 Run validate_output With
 directories = directories,
 files = files,
 name = workflow,
 validator = validator;

Often, the same data is duplicated and there needs to be grouping that uses the
“best” value. For this, a Pick Min or Pick Max clause can get the right
data:

Olive
 Where workflow == "BamQC 2.7+"
 Pick Max timestamp By workflow, library_name
 Group
 By project
 Into
 paths = List path
 # And create on report per project
 Run project_report With
 memory = 4Gi,
 project = project
 paths = paths;

After complicated regrouping, it’s often helpful to transform and rename
things. The Let clause provides this:

Olive
 # Get all the sample provenance and workflows that have produced FASTQs
 Where source == "sample_provenance"
 || metatype == "chemical/seq-na-fastq-gzip"
 Group
 By ius
 Into
 workflows = List workflow,
 paths = {source == "sample_provenance", path},
 sources = source,
 timestamps = timestamps
 Let
 # A lane is processed if there was a LIMS record and
 # at least one FASTQ produced
 lane_was_processed =
 "sample_provenance" In sources
 && (For x In workflows: Count) > 1,
 sequencer_run = ius[0],
 lane_number = ius[1],
 path = For {directory, is_absolute} In paths:
 Where is_absolute
 Univalued directory Default "",
 timestamp = For x In timestamps: Max x Default epoch
 # Now regroup by sequencer run
 Group
 By sequencer_run, path
 Into
 lanes_were_processed = List lane_was_processed,
 lanes = List lane_number,
 timestamps = timestamp
 Run lane_completeness_report With
 run = sequencer_run,
 path = path;

The Let clause can also be used to unpack optional types and single-entry lists and destructure complex types:

 Olive
 Let
 {run_name, lane, _} = ius, # Take the IUS tuple and
 # extract the first element
 # as run_name and the
 # second as lane
 project, # assume project is an existing
 # variable and copy it; shorthand
 # for project=project
 path = OnlyIf path, # path is an optional type; if
 # present, it will be available as
 # path; if absent, the row is dropped
 tag = Univalued tags # tag is a set; if exactly one item
 # is present, it will be available
 # as tag; if absent, the row is dropped
 Run pickup_data
 run = run_name,
 lane = lane,
 path = path;

For details on optional values, see the Mandatory Guide to Optional
Values.

To make reusable logic, the Define olive can be used:

Define standard_fastq()
 Where metatype == "x-chemical/fastq-gzip"
 Where workflow == "CASAVA 1.8";

Olive
 standard_fastq()
 Run fastqc With
 memory = 4Gi,
 input = path;

The Define olive creates a reusable set of clauses and call includes it in
another olive. Parameters can also be specified:

Define standard_fastq(date limit):
 Where after_date > limit
 Where metatype == "x-chemical/fastq-gzip"
 Where workflow == "CASAVA 1.8";

Olive
standard_fastq(Date 2017-01-01)
Run fastqc With
memory = 4Gi,
input = path;

Any kind of normal manipulation can be done in a Define olive:

Define paired_fastq():
 Where metatype == "x-chemical/fastq-gzip" && workflow == "CASAVA 1.8"
 Let
 path = path,
 is_read_two = path ~ /.*_2\.fastq/,
 timestamp = timestamp,
 donor = donor
 Max timestamp By donor, is_read_two
 Group
 By donor
 Into
 read_one = Where !is_read_two Univalued path,
 read_two = Where is_read_two Univalued path;

Olive
 paired_fastq()
 Run bwa_mem With
 memory = 4Gi,
 read_one = read_one,
 read_two = read_two;

Because some operations change variables, calls must appear before Group,
Join, LeftJoin, Flatten, and Let clauses and call clauses that contain
any of these.

[bookmark: monitor]Once a Shesmu program is running, debugging is rather difficult, so Prometheus
monitoring is built into the language using the Monitor clause:

Olive
 Where workflow == "BamQC 2.7+"
 Monitor fastqc "The number of records for FastQC execution." {
 metatype = metatype
 }
 Run fastqc With
 memory = 4Gi,
 input = path;

The number of hits to each monitoring clause will be output via Prometheus. The
name, which will be exported as shesmu_user_fastqc, must be unique in the
program. After the name is the help text. Inside the braces, labels can be
specified; the values must be strings.

[bookmark: dump]Additionally, for more serious debugging, the data passing through an olive can be dumped:

Olive
 Where workflow == "BamQC 2.7+"
 Dump metatype, ius To some_file
 Run fastqc With
 memory = 4Gi,
 input = path;

The specified expressions will be dumped to a file. The file is defined by a
dumper. If no dumper exists, the output is sent nowhere. This makes it possible
to leave Dump clauses in production systems without configuring them and
without a performance penalty.

For convenience, all variables can be dumped in alphabetical order:

Olive
 Where workflow == "BamQC 2.7+"
 Dump All To some_file
 Run fastqc With
 memory = 4Gi,
 input = path;

Plugins can provide dumpers; see the individual plugin documentation for
details on configuring them. A JSON dumper can also be registered at runtime
using the REST API. Consult the Swagger documentation for details.

Since life revolves around inevitably bad data, it’s nice to be able to filter
out data, similar to Where, but collect information about the rejection via
monitoring or dumping. The Reject clause does this:

Olive
 Where workflow == "BamQC 2.7+"
 Reject file_size == 0
 OnReject
 Monitor bad_bam_qc_results
 "The number of bad BamQC results in production"
 {}
 Dump ius, path To junk_bamqc_results
 Alert alertname = "BadFile", path = "{path}" For 30mins
 Resume
 Run fastqc With
 memory = 4Gi,
 input = path;

It is also possible to bring in data from another format (or even the same
format) using a Join clause:

Olive
 Where workflow == "BamQC 2.7+"
 Join {path} To qc_data {qc_file}
 Where passed
 Run fastqc With
 memory = 4Gi,
 input = path;

Unlike SQL, Shesmu only knows how to do one join: a cross or Cartesian join.
This creates a new output for every possible pair of inputs. There must be no
names in common between the data going into the join and the input format being
joined against. If there are, they must be eliminated or renamed using a Let
clause.

There is a LeftJoin clause that works like a Join and a Group clause at once:

Olive
 Where workflow == "BamQC 2.7+"
 LeftJoin {path} To qc_data {qc_file}
 passed_count = Where passed Count
 Where passed_count > 0
 Run fastqc With
 memory = 4Gi,
 input = path;

The Flatten clause can be used to create rows for each item in a collection:

Olive
 Where workflow == "BamQC 2.7+"
 Flatten input_path In input_paths
 Where !file_exists(input_path)
 Run missing_file_report With
 input = input_path;

The incoming variables act as the By part of the LeftJoin and the collected
variables are available in the output. The collectors have access to the joined
stream.

Another type of olive is one that fills a database or data ingestion process
with its results:

 Olive
 Where workflow == "BamQC 2.7+" && fize_size == 0
 Refill foo With
 workflow = workflow;

This is effectively meant to erase and rebuild the database every time the
olive runs, though possibly implemented more efficiently.

There is a final type of olive: one to generate an alert:

 Olive
 Where workflow == "BamQC 2.7+" && fize_size == 0
 Alert
 alertname = "BadGeneratedData",
 environment = "production",
 source = workflow
 For 30mins;

The final number is an expression to determine how long this alert should last.
If the alert is not regenerated in this time period, it will expire. The
Labels define the labels for an alert, which are used to define the alert and
deduplicate it from other alerts. The Annotations section define information
that is passed to Alert Manager that gets overwritten. For details, see the
Alert Manager [https://prometheus.io/docs/alerting/clients/] documentation.

Testing

Shesmu provides three ways to check a script:

	uploading a script using the UI (best for users)

	uploading a script to a remote server (best for automation, including presubmit checks)

	using a local copy of the Shesmu JAR and a remote server (only useful if changing the Shesmu language)

To use the UI, from the Shesmu server page, choose Tools then Olive
Simulator. Write script in the box or use the upload the button and then hit
Simulate. If successful, the metro diagrams and generated output will be
displayed.

For the remote checking, use a command similar to the following:

curl -X POST --data-binary @${SCRIPT_FILE} http://${SERVER}:8081/check

If 200 OK is returned, the script is valid. 400 Bad Request will be returned if
there are errors and the body will contain the errors. In a presubmit check,
the following might be useful:

 for SCRIPT_FILE in path/to/*.shesmu
 do
 if [$(curl -s --data-binary @"$SCRIPT_FILE" -o /dev/stderr \
 -w "%{http_code}" -X POST http://${SERVER}:8081/check) = "200"]
 then
 echo "\033[1;36mOK\033[0m\t$SCRIPT_FILE"
 else
 echo "\033[1;31mFAIL\033[0m\t$SCRIPT_FILE"
 fi
 done

For the final method, using a local copy, build the Shesmu server, then run:

 java -cp shesmu/shesmu-server/target/shesmu.jar ca.on.oicr.gsi.shesmu.Check \
 -r http://${SERVER}:8081 ${SCRIPT_FILE}

Types

There are a small number of types in the language, listed below. Each has
syntax as it appears in the language and a descriptor that is used for
machine-to-machine communication.

Name	Syntax
—	—
Integer	integer
Float	float
String	string
Boolean	boolean
Date	date
List	[inner]
Empty List	[]
Tuple	{t1,t2, …}
Object	{field1=t1,field2=t2, …}
Optional	inner?
Path	path
JSON	json

Every input variable’s type is available as name_type. For instance, the
shesmu input format has the variable locations, so locations_type will be
available.

User defined types can also be created:

TypeAlias my_name {integer, string, location_type};
TypeAlias my_name {id = integer, name = string, location = location_type};

Now my_name will be available for parameters in Define and Function. All
TypeAlias definitions must occur at the top of the file, after the Input
declaration.

Additionally, types can be destructured. For instance, locations_type is a
list of tuples. The tuple can be specified from the list of tuples by doing In location_type. This also works for the optional type. Similarly, the [i]
can be used to access the type of a tuple item and .field to access the
type of a field in a named tuple.

So, (In [{integer, string}])[0] is integer.

It is also possible go get the type of functions:

	Return function will get the return type of the function

	Argument function(index) will get the type of the argument at index

These are helpful when dealing with other functions with unwieldy types:

Input pinery_ius;
Function parse_bases_mask provided by a plugin
TypeAlias bases_mask_parts_type Return parse_bases_mask;

Function is_valid_mask(bases_mask_parts_type input)
 # long and complicated checks on input
 ;

Function transform_bases_mask(bases_mask_parts_type input)
 # long and complicated manipulation of input
 ;

Olive
 Let bases_mask_parts = parse_bases_mask(bases_mask)
 Where is_valid_mask(bases_mask_parts)
 Run some_workflow With bases_mask = transform_bases_mask(input);

In this example, parse_bases_mask parses an Illumina bases mask string and
produces a very large object:

 [{
 group = integer,
 length = integer,
 ordinal = integer,
 position = integer,
 type = string
 }]

Rather than repeat this type at every function that uses it, it gets assigned
to a TypeAlias and rather than specify the type at all, Return parse_bases_mask simply copies the output type from the parse_bases_mask
function, preventing the need to write it.

Functions

At the top level of a file, functions may be defined:

Function myfunc(string someparameter) someparameter ~ /.*x$/;

Functions may use constants or previously defined functions (either built-in or
defined in the file). Functions cannot be defined recursively. The return type
is determined automatically.

Functions can be shared across Shesmu files using the Export keyword:

Export Function myfunc(string someparameter) someparameter ~ /.*x$/;

Take care not to duplicate exported functions with functions exported by other
scripts, functions from plugins, or built-in functions. If this happens, one
will be selected at random.

Constants

Constants may be defined intermixed with olives and functions, after the
Input and any TypeAlias definitions:

myval = 3 * 12;

Constants may use functions defined in this file. However, functions cannot use
constants nor can constants use other constants. Olives may use constants.

Descriptions and Tags

Once a server has a lot of olives, distinguishing them from the Shesmu console
can be difficult. Descriptions can be added to give a human-friendly
description of the olive:

Olive
 Description "BamQC (new version)"
 Where workflow == "BamQC 2.7+"
 Run fastqc With
 memory = 4Gi,
 input = path;

Tags can also be added to olives. Tags are attached not only to the olive, but
the actions generated by an olive.

Olive
 Description "BamQC (new version)"
 Tag qc
 Tag bam_consuming
 Where workflow == "BamQC 2.7+"
 Run fastqc With
 memory = 4Gi,
 input = path;

This can make it easy to find related actions even if they come from the
different olives.

Additionally, for Run olives, extra tags can be added to the actions
generated by olives based on the data. This olive will tag generated olives
with qc, bam_consuming, and the contents of the project variable:

Olive
 Description "BamQC (new version)"
 Tag qc
 Tag bam_consuming
 Where workflow == "BamQC 2.7+"
 Run fastqc
 Tag project
 With
 memory = 4Gi,
 input = path;

Destructuring Assignment

Shesmu supports destructuring tuples and objects in most assignment contexts.

In For expressions, a destructuring assignment can be used.

For example, to gain access to a tuple:

For {x, y} In [{1, "a"}, {2, "b"}]: Where x > 5 Count

Destructuring also works on objects:

For {x = n, y = l} In [{n = 1, l = "a"}, {n = 2, l = "b"}]: Where x > 5 Count

Since field names are often the best name to use for a variable, a shorthand
assignment is available:

For {; n, l} In [{n = 1, l = "a"}, {n = 2, l = "b"}]: Where n > 5 Count

For objects, fields can be omitted:

For {x = n} In [{n = 1, l = "a"}, {n = 2, l = "b"}]: Where x > 5 Count

For tuples, elements cannot be omitted, but they can be discarded with _:

For {x, _} In [{1, "a"}, {2, "b"}]: Where x > 5 Count

Type conversion to JSON and strings is also supported:

For {x As string, _} In [{1, "a"}, {2, "b"}]: LexicalConcat x With ", "

Destructuring can also be nested:

For { {x, _} = n} In [{n = {1, True}, l = "a"}, {n = {2, True}, l = "b"}]:
 Where x > 5 Count

For objects, variables can be automatically inferred from the fields:

For * In [{n = 1, l = "a"}, {n = 2, l = "b"}]: Where n > 5 List l

The * can be nested, but only one may be used in at a time.

And it can be used in the Reduce accumulator:

For x In [1, 2, 3]: Reduce ({a, b} = {0, False}) {a + x, b || x == 2}

It can be used in Begin expressions and in Let and Flatten in For expressions.

It can also be used in Let, Monitor, Run, and Alert clauses in olives:

Olive
 Monitor instrument_record_count "The number of records per instrument" {
 {instrument, _} = instrument_and_version
 }
 Let
 {run_name, lane, _} = ius,
 path = path
 Run instrumentqc With
 run_name = run_name,
 lane = lane,
 {flowcell_type, flowcell_version} = fetch_flowcell_info(run_name),
 memory = 4Gi,
 input = path;

It is currently disallowed in assignments in Group and LeftJoin.

Note that the wildcard object destructuring, *, cannot be used in Alert or
Monitor. If it is used in Let or Require, it will be lost after reshaping
the data. It can be used in multiple contexts (e.g., For * In x: Reduce (* = {foo = 0}) func(foo, bar)), but this is strongly discouraged as Shesmu will
assign all variables it has not seen to the closest * (i.e., foo and
bar are assumed to come from the Reduce argument). This can be especially
fraught given the order of evaluation matters:

For * In x: Reduce (* = {foo = 0})
 func(foo, bar) # foo and bar come from the second *
For * In x: Where bar > 3 Reduce (* = {foo = 0})
 func(foo, bar) # foo comes from the second *, bar from the *

Let * = x Where y == 4
 || (For * In a: All aa && y == 3)
 # y will come from Let *, aa from For *
Let * = x Where (For * In a: All aa && y == 3)
 || y == 4 # aa and first y will come from For *, second from Let *

Since this is very confusing, as a general rule: one star a time.

Variables Gangs

When grouping, it can be useful for have predefined sets of variables to use in
a By clause for any given input format. A input format can define a gang that
defines a short-hand name of a set of variables to used in grouping together.
The gang can then be used in the By of either a Group or Pick operation:

Olive
 Where workflow == "BamQC 2.7+"
 Pick Max timestamp By workflow, @patient_tissue_prep
 Group
 By @patient_tissue_prep
 Into
 paths = List path
 Run prep_report With
 memory = 4Gi,
 file_name = "{@patient_tissue_prep}"
 paths = paths;

The gang, in this case, patient_tissue_prep defines a number of fields that
can be grouped together in By clause, prefixed with an @.

A gang can also be converted to an underscore delimited string:
"{@patient_tissue_prep}"; the order of fields is defined by the input format.

A gang can be converted to a tuple {@patient_tissue_prep}.

A gang can also be used in a Let clause to preserve the contents of the gang:

Let
 timestamp = timestamp,
 @patient_tissue_prep,
 project = project

Note that gangs can be reused after the data has been reshaped. This is means
it is possible to redefine the gangs in a nonsensical way.

Identifiers

All identifier is Shesmu, including olive definitions, function names, action
names, and variables must begin with a lowercase letter a-z, followed by an
number of underscores, lowercase letters a-z, and decimal digits.

Olive definitions, function names, action names, and variables exist in different
name spaces. It is possible to create a parameter with the same name as an
action, though this is not recommended.

Variables

The input formats and their variables available in the Shesmu language can be
seen on the status page, or:

curl http://localhost:8081/variables | jq -S .

or:

java ca.on.oicr.gsi.shesmu.compiler.Build -v

Signature and Signable Variables

Since Shesmu is designed to create repeatable actions, it’s useful to know what
data was read to create this data. If an input format has a unique ID for every
record, the some values may be immutable for that ID, but other values may be
(externally) changed. For instance, suppose there is a record of what was
placed on a sequencer. A user may have incorrectly entered what kit was used to
prepare this sample; if so, changing it might need to trigger a new action in
Shesmu.

If the input hasn’t changed, even though Shesmu has been restarted, or the
olive is changed in an unimportant way, the input to the action should be
considered the same. A signature variable is a way to create a unique signature
based on the data that was actually used by an olive that can be stored as part
of the action.

In every input format, some variables can be marked signable. That means
their values may be changed for the same ID. Fields which are immutable for a
given ID are not signable. The exact list of fields which are signable can
change between input formats.

An olive references variables from the input, and Shesmu tracks the values of
these referenced (”used”) variables.

A variable is considered used if it is possible to be referenced, but it does
not need to be referenced in order to be considered used. For instance:

If False Then a Else b

references both a and b even though the value of a is never actually the
result of this expression.

The signable variables are used to create signature variables. The
supported signature variables are shown on the status page and apply to all
import formats.

Signature variables are treated like any other variable and they are lost
during a Group, Join, or Let operation if not preserved. Once the input
is manipulated by a Group, Join, or Let operation, it is not possible to
track what input was used. So, references are only considered from the start of
the olive until the first manipulation operation. If it is a Run olive, with
no manipulation, the signable variables referenced in With arguments are also
included.

The collection of referenced signable variables is considered over the whole
scope. For instance:

Olive
Where “project” In std::signature::names # This is true even though
project is referenced after
this check
Where project ~ /N.*/
Run x With project = project;

Since there are no Group, Join, or Let clauses, the entire olive is in
scope. The signable variable project is referenced (used) twice: once in the
Where clause and once in the arguments to the action. Therefore project is
one of the referenced variables and appears in std::signature::names. Order
does not matter: although project is referenced after std::signature::names
is used, it is still present because it is used in that scope.

This behaviour is necessary to ensure that a signature returns the same
value in all parts of the program.

Example

As an example, let’s suppose we want to run a variant caller. It will take a
list of genome alignments for different tumour/normal pairs in a patient and
produce variant information. Whether the tissue is reference (normal) or tumour
is tissue_type. Now, the tissue_type is associated with each genome
alignment (BAM) file, but if the tissue type is changed, the BAM file is not,
so the action that produces the BAM does not need to be re-run. However,
changing the tissue type affects the variant caller, so it should be triggered
to rerun even though the input BAM is not changed.

Version 1;
Input cerberus_fp;

Olive
 Where metatype == "application/bam"
 Max timestamp By donor, tissue_type
 Group
 reference = Where tissue_type == "R" Univalued path,
 reference_signature =
 Where tissue_type == "R"
 Univalued std::signature::sha1,
 tumour = Where tissue_type == "T" Univalued path,
 tumour_signature =
 Where tissue_type == "T"
 Univalued std::signature::sha1
 By donor
 Run variant_caller With
 input_signatures = [reference_signature, tumour_signature],
 reference_file = reference,
 tumour_file = tumour;

The value of std::signature::sha1 is a string containing a hexadecimal SHA-1
hash of all the names and values referenced variables. There is also
std::json::signature which produced a JSON object filled with the referenced
values. By saving the signatures as part of the action, we save the input
information.

In this example, the signature will save donor, and tissue_type. That
means if there was a sample swap and both tissues belong to a different donor,
the signatures will change and the action will be different and, therefore,
re-run, even though the donor is not directly included in the parameters to the
action. Not all values are included. The metatype is considered immutable in
the cerberus_fp format and not included in the signature. The input format
decides what variables may be included in the signature.

Of course, the donor and tissue type could be included as arguments to the
action, but to ensure correct behaviour of the action, every variable would
have to be included without fail. This is burdensome for the programmer, so the
signature is a short hand that includes the correct information.

Now, suppose we wish to compare possible variants that are in two organs of interest:

Version 1;
Input cerberus_fp;

Olive
 Where metatype == "application/bam"
 Pick Max timestamp By donor, tissue_origin
 Group
 blood = Where tissue_origin == "Blood" Univalued path,
 blood_signature =
 Where tissue_origin == "Blood"
 Univalued std::signature::sha1,
 organ = Where tissue_origin == "Brain" Univalued path,
 organ_signature =
 Where tissue_origin == "Brain"
 Univalued std::signature::sha1
 By donor
 Run variant_caller With
 input_signaturees = [blood_signature, organ_signature],
 reference_file = blood,
 tumour_file = organ;

This olive runs the same action as the olive above, but the information that
goes into the signature is now different because the information used in making
the decision is different.

The set of what information goes into a signature is unique to each olive.

 <no title>

 JIRA Ticket:

	[] Updates Changelog

	[] Updates developer documentation

 The Shesmu Demo Server

The Shesmu Demo Server

Since Shesmu is heavily dependent on its configuration, a blank Shesmu server
is really pointless. To explore the operation of a Shesmu server, this demo
server configuration contains real olives from OICR GSI’s production
environment.

Getting is Running

To launch the demo server, run a Shesmu server with this directory as the
configuration path. For the Docker instance:

docker run -p 8081:8081 \
 --mount type=bind,source=/this/repo/shesmu/demo,target=/srv/shesmu \
 oicrgsi/shesmu:latest

Or using the build directory:

mvn package -DskipTests=true && SHESMU_DATA=demo java \
 -cp shesmu-server/target/shesmu.jar:shesmu-pluginapi/target/shesmu-pluginapi.jar:$(ls plugin-*/target/shesmu-plugin-*.jar|tr '\n' :) \
 ca.on.oicr.gsi.shesmu.Server

And then the server will be available on [http://locallhost:8081/]

Understanding OICR’s Data and Pipeline

OICR GSI starts data analysis at the end of sequencing. Our LIMS system,
MISO [https://github.com/miso-lims/miso-lims] tracks sample preparation
through to sequencing and monitors sequencing instruments and exports this
information via a common LIMS interface we developed,
Pinery [https://github.com/oicr-gsi/pinery].

For this demo, we have included a subset of data from Pinery in
demo.pinery_ius-local which contains information about each barcode in an
Illumina sequencing instrument plus a record to represent the lane itself with
the special barcode NoIndex. We call each of these an individual unit of
sequencing and you will see ius in various places.

This data will be ingested by vidarr-bcl2fastq3.shesmu which will run
BCL2FASTQ for each sample IUS. We run mixed length barcodes frequently, so we
have to a lot of complicated grouping and processing to handle mismatches
between barcodes and bases masks. Additionally, MISO only provides some
information about Illumina’s flowcell architecture, so Shesmu is responsible
for determining which lanes are loaded by a single port.

If there are no reads for a particular IUS, we send a JIRA ticket to the lab to
determine the source of the problem. This olive is in
ticket-missingreads.shesmu.

Once a workflow runs, its output is captured by our file provenance system and
those files are associated with the original LIMS metadata. That interface is
called Cerberus and demo data is provided in demo.cerberus_fp-local. The
remaining workflows each ingest files that are the output of another workflow,
starting with BCL2FASTQ. At this point, we start making customer-specific
decisions about how the data is processed. project_info.jsonconfig describes
customer configuration that our systems need. We also need to make decisions
based on the lab work and kit_info.jsonconfig holds information about
different processing kits out lab uses and provides information for using them.

For demonstration, we have included vidarr-bwamem.shesmu which does alignment
on the FASTQs generated by BCL2FASTQ and vidarr-bmpp.shesmu, which collects
related BAMs for merging multiple BAMs from the same donor and performing
co-cleaning on a per-project basis.

We have not provided the workflows for any of these; merely the minimal
information Shesmu needs as a .fakeaction file. The full workflows are
available on OICR GSI [https://github.com/oicr-gsi], but we have not included
our workflow engine server and its configuration.

Exploring the Demo

When Shesmu first starts up, you might see errors that the scripts cannot be
compiled. Since plugins have to discover and present actions and functions for
use by the olives. The olive compiler will keep retrying to compile the
scripts, so the server will settle after a few minutes.

On the Olives page, the installed olives will appear on the menu. The
dashboard will show a summary of the number of actions and alerts associated
with each olive. There is a view for each file and each olive in that file. For
individual olives, there will be a data flow diagram. After Shesmu loads an
olive, it will schedule it for execution. Before the olive has scheduled, the
status will note that it hasn’t yet run and the dataflow diagram will be blank
on the left-hand side. Once finished, the actions or alerts associated with an
olive will be displayed and numbers, indicating the number of records
associated with each clause in an olive.

There is an olive simulator available from the Tools menu. On the Olives
dashboard, it is possible to preload the simulator with an existing olive
script using the Edit in Simulator link.

On the Actions page, a similar view to the actions on the Olives page is
shown, but the output of all olives are mixed together. It is possible to
filter the displayed actions using the Add Filter button. Since the demo uses
fake actions, all actions will be in a ZOMBIE state, but multiple states
would be present in a server with real actions.

The actions display, on both the Olives and Actions pages, a variety of
filters that can limit the actions shown. The current filter is saved in the
URL, so the URL can be shared easily. On the olives page, it is also possible
to save the current filter with a name. The search interface is limited in what
it can display, but a more sophisticated text filter search is available by
clicking Advanced. The overview also provides a way to filter the actions.
Clicking on table headers or cells will filter to only include actions that
match the label of the rows and/or columns. There may also be histograms, in
which case, clicking and dragging a time range will filter for that range.

 JSON Directory Listing Tool

JSON Directory Listing Tool

For the unix_file input format, supported by the SSH
plugin, Shesmu will try to crawl the directory structure using
a find command to produce JSON output. This works about as well as one could
hope. If file names, user names, or group names have characters that are now
allowed in JSON strings, it does not go well. This tool provides a more robust
alternative that does the JSON encoding correctly. To install it:

sudo apt-get install build-essential pkg-config libjsoncpp-dev
autoreconf -i
./configure --prefix=/install/dir
make
make install

Once installed, in the .sftp configuration for Shesmu, the "listCommand"
can be set to "/install/dir/bin/json-dir-list" to use this command instead.

 Maintenance Schedule Editor

Maintenance Schedule Editor

Editing maintenance schedules is hard, especially when Excel will break all
the dates. This is a simple, ugly editor for those files.

Build with:

 mvn clean install

Then run the resulting JAR:

 java -jar target/maintenance-editor.jar maintenance.schedule

If no file is specified, an open dialog will be presented. If you must create a
new schedule, create a blank file first.

 Cardea

Cardea

Cardea [https://github.com/oicr-gsi/cardea] is an API server that serves QC Gate ETL data.
The Cardea plugin for Shesmu can set Cardea up as a Shesmu input source for case data.

The Cardea API matches Shesmu’s remote JSON source, so input formats can be set up as follows:

Case Summary:

Configuration file named myserver.case_summary-remote contains:

{
 "url": "https://cardea-server/shesmu-cases",
 "ttl": 30
}

 Cerberus Plugin

Cerberus Plugin

Cerberus [https://github.com/oicr-gsi/cerberus] creates file provenance from
Pinery [http://github.com/oicr-gsi/pinery] and
Vidarr [https://github.com/oicr-gsi/vidarr].

Deploying this plugin requires the gsi-common plugin be deployed as well.

To join data from one or more Vidarr servers with one or more Pinery servers,
create a configuration file ending in .cerberus as follows:

 {
 "pinery": {
 "pinery-miso": {
 "url": "http://pinery.example.com/",
 "versions": [
 2,
 7,
 8
]
 }
 },
 "vidarr": {
 "prod": "http://vidarr-prod.example.com:8000"
 }
 }

The "pinery" section describes all Pinery instances that can be used LIMS
data sources. The keys are the provider name used in Vidarr. For each Pinery
instance, multiple versions of the same data can be used by specifying them in
the "versions" list.

The "vidarr" section describes all the Vidarr instances that should be used
as file sources. The keys are the internal name of that Vidarr instance and
the value is the URL of that instance.

After joining, file records will be available in the cerberus_fp input
format. Workflows that do not have matching LIMS data will be available in the
cerberus_error input format.

 Git and GitHub Plugin

Git and GitHub Plugin

This plugin provides support for BitBucket and GitHub with two different configuration files: .gitlink files allow linking configuration files to an online git interface and .github files allow accessing GitHub information in olives.

Git Link

It is recommended that the Shesmu configuration files and olives be stored in a git repository. If that repository is hosted on BitBucket, GitLab, or GitHub, then the Shesmu web interface can provide hyperlinks to the web interface of BitBucket, GitLab, or GitHub. Create a configuration file ending in .gitlink as follows:

{
 "prefix": "/srv/shesmu/gitrepo",
 "type": "GITHUB",
 "url": "https://github.com/myorg/gitrepo"
}

for GitHub or GitLab. For BitBucket:

{
 "prefix": "/srv/shesmu/gitrepo",
 "type": "BITBUCKET",
 "url": "https://bitbucket.oicr.on.ca/projects/MYORG/repos/gitrepo"
}

Any configuration files that are found in the prefix directory will be mapped onto the repository. Prefixes should be non-overlapping or the URLs will be selected at random.

GitHub Repository Information

The current state of GitHub branch information can be used as an input format. Create a configuration file ending in .github as follows:

{
 "repo": "myrepo",
 "owner": "myorg"
}

The owner is the GitHub user or organisation that owns the repository. Now, olives can use Input github_branches; to access the current state of all branches in the repository. Note that this uses the heavily rate-limited unauthenticated public API.

 GSI-Common Plugin

GSI-Common Plugin

This plugin provides no functionality of its own. It contains code common to
the Pinery and
Cerberus plugins.

 Guanyin Plugin

Guanyin Plugin

Guanyin [https://github.com/oicr-gsi/guanyin] is a report-tracking application.
It records which reports have been run, and with what parameters.
The Guanyin plugin for Shesmu can allow Shesmu to launch reports to be run
through Cromwell [https://github.com/broadinstitute/cromwell]. Before
launching a report action, Shesmu first checks with Guanyin to see if the
report has already been run.

Launch Custom Reports with Guanyin

Shesmu frequently scans the input data and generates the set of actions to be
launched for that data. Since Shesmu is stateless, a record of which actions
have been launched must be stored elsewhere, or else Shesmu will launch the same
actions every few minutes. The Guanyin plugin allows Shesmu to communicate with
a Guanyin instance, and Shesmu will only launch a report action if no report
of that type with the exact same parameters has been recorded in Guanyin.

Shesmu needs two things in order to launch a custom report action: a script to
define how the report is run, and an olive to determine what data should be
passed to the report-running script.

Write Guanyin report actions

Guanyin report actions require a Python script and a JSON file of the same name
(<action-name> and <action-name>.json, respectively).

Guanyin report action JSON file

The JSON file defines what parameters the script will expect to receive from the
olive. Each parameter has a type (a Shesmu
type signature [https://github.com/oicr-gsi/shesmu/blob/master/language.md#types])
and a required value:

{
 "environment": {
 "required": true,
 "type": "s"
 },
 "input files": {
 "required": true,
 "type": "as"
 }
}

Guanyin report action script

The Guanyin report action script is written in Python and details what should
be done to the input files it receives from the olive in order to create the
report. This may involve shelling out, or it may involve launching via
Cromwell (when that plugin is developed). There are several important things
to keep in mind when writing this script:

	The olive defines which parameters are passed to this script. These
parameters are the With arguments from the Run <action-name> With ...
clause, and they are sent to the Python script via standard in. So, for an olive
with the following Run clause:

Run test-olive With
project = “TEST”,
input_files = records;

The test-olive Python file could access these parameters like so:

import json
import sys

config = json.load(sys.stdin)
All key-value pairs from the olive `With` clause are now in `config`

Generate the report and save it on disk:

 # generate the report
 output_path = os.path.join(environment["fsroot"], "myreport.txt")

Add emails for report recipients:

recipients = ["you@example.com"] # can be left blank

Generate an output URL for the report:

output_url = "http://example.com/myreport.txt"

Send the report details to Guanyin. This Guanyin writeback step is critical!
This is what keeps Shesmu from launching the same report every 15 minutes even
when the parameters have not changed. This should be the final line of the
script.

report.write_back(
 "user-friendly identifier for the specific report generated",
 ["/array/of", "files/used/to", "/generate/this/report"],
 output_path,
 output_url,
 "extra information that should go in the email but can be left empty",
 recipients,
 "brief description of this report"
)

Guanyin report olives

The olive specifies how files should be selected for running the given report.
The
language.md [https://github.com/oicr-gsi/shesmu/blob/master/language.md#olives-and-clauses]
document describes the Shesmu language that is used in the olives. The process
of writing a Guanyin report olive is much the same as that for writing and
testing any other olive. The biggest change is that the action name in the Run <action-name> With clause must match the <action-name> of the Guanyin
report action script above, and the key-value
pairs in the With clause must be of the same type as declared in the Guanyin
report action JSON file above.

 BED and FAI File Plugin

BED and FAI File Plugin

BED Interval Files

This plugin allows converting a directory of BED files for specific targeted sequencing
panels into a lookup structure that contain path and chromosome information. A file ending
.intervalbed described below points to a separate directory of BED files.

{
 "directory": "panels",
 "replacementPrefix": "/srv/panels"
}

The "directory" property defines a path, relative to the configuration file, to scan for BED files.
The "replacementPrefix" defines a new prefix that should be used for paths given to the olives.
That is, suppose this file lives in /srv/shesmu/config, then Shesmu will
scan /srv/shesmu/config/panels for BED files and for a BED file ALL.WG.hg38.bed, it will be
given to the olive as /srv/panels/ALL.WG.hg38.bed.

The panels must have the format panel.library-type.genome.bed. The genome can be any
characters except .. The library-type can be any uppercase characters. Multiple library types
can be specified, separated by commas (e.g., foo.EX,WG.hg19.bed) The panel can be any
characters except ., but ALL is treated specially.

When an olive performs a lookup, it must provide the panel, library type, and genome. First, an
exact match is attempted (e.g., ::get("TS", "mm10", "IDT Mickey Mouse" will look
for IDT Mickey Mouse.TS.mm10.bed). If no exact match is found, then it will fall back on the ALL
file, if available (e.g., ::get("WG", "mm10", "IDT Mickey Mouse" will look
for IDT Mickey Mouse.WG.mm10.bed first, then ALL.WG.mm10.bed).

Sometimes a panel has multiple names or the name contains characters that should not be in files
names (.e.g, /, .). In that case, a second file with the extension .alias can be provided
with alternate panel names, one per line. Blank lines are ignored.

FAI Sorting Plugin

This plugin allows reading FASTA index files (.fai) for a genome build and
creating a sort index. A directory should contain all the .fai files and then
a .genomeidx file as follows:

{
 "directory": "genome-indicies"
}

The "directory" property defines a path, relative to the configuration file,
to scan for FAI files. It will export a function to olives called sort_order
that can be used like this in an olive:

For chromosome In chromosomes:
 Sort genomeidx::foo::sort_order("hg19", chromosome)
 Where is_useful_for_workflow(chromosome)
 FixedConcat chromosome With ","

to generate a string of chromosome names in the same order as the FASTA file.

 JIRA Plugin

JIRA Plugin

JIRA [https://www.atlassian.com/software/jira] is an issue and project tracking
application.
The JIRA plugin for Shesmu can be used to:

	open and close tickets

	search for tickets matching a keyword

	count the number of tickets matching a keyword

To set up a JIRA integration, create a file ending in .jira as follows:

 {
 "closeActions": [
 "Close Issue",
 "Resolve Issue"
],
 "closedStatues": [
 "CLOSED",
 "RESOLVED"
],
 "defaultFieldValues": {},
 "issueType": "Bug",
 "passwordFile": "/path/to/jira/password",
 "projectKey": "PK",
 "reopenActions": [
 "Reopen Issue"
],
 "searches": [],
 "url": "https://jira.example.com",
 "user": "ticketbot"
 }

closeActions are the names of the buttons (yes, really) in JIRA that close a
ticket. reopenActions are the names of the buttons in JIRA that reopen a
closed ticket. closedStatuses are the statuses of tickets that should be
considered closed. Any other status is considered open.

The url defines the JIRA server that will be used and user is the name of
the user to authenticate as and passwordFile is the path of a text file
containing the passsword for this user. One configuration file is needed for
each JIRA project, which is specified in the projectKey property. Normally,
the closeActions, reopenActions, and closedStatuses will be the same for
most projects on a JIRA server, but they need not be, hence the need for
separate configuration files.

Shesmu needs to create and reopen tickets, but it can only do so if there are
either no mandatory fields to fill in beyond the summary and description or it
has the required fields. defaultFieldValues provides values to use on
required fields. Fields which are not required are not sent even if a default
is provided. Shesmu allows setting an assignee on new tickets, but the assignee
field must be available in the Create Ticket window or an error will occur.

The searches section allow JIRA tickets to be integrated with Shesmu’s action
searches on the Actions page. The idea is meant for the following use case:
if there is a person responsible for fixing failing actions from Shesmu, how
should they delegate those issues? Using searches per the following:

"searches": [
 {
 "filter": {
 "states": [
 "FAILED",
 "UNKNOWN",
 "HALP"
],
 "type": "status"
 },
 "jql": "project IN (\"GC\", \"GDI\") AND resolution = Unresolved",
 "name": "Problems from {key} - {summary} ({assignee})",
 "type": "EACH_AND"
 },
 {
 "filter": {
 "states": [
 "FAILED",
 "UNKNOWN",
 "HALP"
],
 "type": "status"
 },
 "jql": "project IN (\"GC\", \"GDI\") AND resolution = Unresolved",
 "name": "Pipeline Lead Dashboard",
 "type": "ALL_EXCEPT"
 },
 {
 "filter": {
 "states": [
 "FAILED",
 "UNKNOWN",
 "HALP"
],
 "type": "status"
 },
 "jql": "project IN (\"GC\", \"GDI\") AND resolution = Unresolved",
 "name": "Problems Currently Handed-Off",
 "type": "ALL_AND"
 }
],

Each search has a jql expression which is used to extract tickets from JIRA.
Any matching tickets have their descriptions scanned for action identifiers
or text-encoded searches (available from the Action and Olive pages by
going to Export Search, then Copy to Clipboard for Ticket).

These collected searches are combined with the base search filter using the
type. There are 3 types supported:

	EACH_AND creates a search for each ticket by combining the base filter
and the filters from the ticket. The name can contain {key} for the ticket
ID (e.g. JIRA-123), {summary} for the summary/title of the ticket, and
{assignee} for the full name of the person assigned to the ticket.

	ALL_AND creates one search that matches the base filter and the union of
the ticket filters.

	ALL_EXCEPT creates one search that matches the base filter and none of the
ticket filters.

	BY_ASSIGNEE creates one search that matches the base filter and any of the
ticket filters that are assigned to a particular person. The name can contain
{assignee} for the full name of the person for the ticket group.

Searches can also be export back to JIRA from Shesmu. By setting the
"issueType" property to the name of an issue type for this project, the
Export Search button will have an entry to create a new issue with the
current search already in the description. If the "issueType" is null or not
an issue type present in the project, the button will not appear.

 Loki Plugin

Loki Plugin

Loki [https://grafana.com/oss/loki/] is a log aggregation system. This allows
plugins to send their logging output to Loki. To enable it, create a file
ending .loki with the following:

{
 "url": "http://your.loki.server/loki/api/v1/push",
 "labels": {
 "environment": "foo"
 }
}

The "url" property is the URL of the Loki server to push logs into. The
optional "labels" object will apply static labels to all values logged from
this instance.

 Mongo DB Plugin

Mongo DB Plugin

The Mongo DB plugin allows Shesmu to get perform pre-defined queries on a Mongo
DB instance.

To configure a Mongo server, create a file ending in .mongodb as follows:

{
 "uri": "mongodb://...",
 "functions": {}
}

Shesmu will establish a connection to the remote server and then export some
functions to the olives. There are two kinds of functions: find and
aggregate.

Find Functions

Here is an example find function:

"historic_lane_lims_keys": {
 "collection": "lanes",
 "criteria": {
 "laneProvenanceId": {
 "$$parameter": 1
 },
 "provider": {
 "$$parameter": 0
 },
 "version": {
 "$$parameter": 2
 }
 },
 "database": "provenance",
 "description": "Find any lanes LIMS attributes for a particular version",
 "operations": [
 {
 "comparator": {
 "lastModified": -1
 },
 "type": "sort"
 },
 {
 "projection": {
 "laneProvenanceId": false,
 "lm": false,
 "provider": false,
 "version": false
 },
 "type": "projection"
 }
],
 "parameters": [
 "string",
 "string",
 "string"
],
 "resultType": "keyvalue",
 "selector": "FIRST",
 "ttl": 86400,
 "type": "find"
}

The database and collection specify where to search for the data. The
initial matching requirements on the find operation are specified in
criteria. Additional transformation can be specified using the operations
list. Each operation has a type and another value to specify the parameters in
the usual Mongo format:

Operator (type)	Parameters	Description
—	—	—
"filter"	filter	A JSON structure to filter on.
"limit"	limit	A fixed number to limit the record count.
"max"	comparator	A JSON structure to sort on.
"min"	comparator	A JSON structure to sort on.
"projection"	projection	A JSON structure to project on.
"skip"	skip	A fixed number of records to skip.
"sort"	comparator	A JSON structure to sort on.

Any JSON structure will be included as per usual Mongo semantics. The olive
will need to provide parameters to the query. The parameters specifies the
type of each parameter. These can be the inserted into the JSON structures
using {"$$parameter": x} where x is the zero-based parameter index. No
type checking is done on the query. See details about parameter types below.

Finally, the query will be performed and converted using resultType. The
conversion is described below. Mongo will return, potentially, a collection of
results. Therefore, two selector options are available:

Selector	Behaviour
—	—
FIRST	Choose the first result. An optional version of resultType will be used in case no results are available.
ANY	Collect all results into a set.

All returned data is cached for ttl minutes.

Aggregate Functions

Here is an example aggregate function:

"things": {
 "database": "provenance",
 "description": "Find any lanes LIMS attributes for a particular version",
 "operations": [
 {
 "$match": {
 "id": { "$$parameter": 0 }
 }
 }
],
 "parameters": [
 "string"
],
 "resultType": "keyvalue",
 "selector": "FIRST",
 "ttl": 86400,
 "type": "find"
}

The database specifies where to search for the data. The condition on the
aggregate operation are specified in operations.

Any JSON structure will be included as per usual Mongo semantics. The olive
will need to provide parameters to the query. The parameters specifies the
type of each parameter. These can be the inserted into the JSON structures
using {"$$parameter": x} where x is the zero-based parameter index. No
type checking is done on the query. See details about parameter types below.

Finally, the query will be performed and converted using resultType. The
conversion is described below. Mongo will return, potentially, a collection of
results. Therefore, two selector options are available:

Selector	Behaviour
—	—
FIRST	Choose the first result. An optional version of resultType will be used in case no results are available.
ANY	Collect all results into a set.

All returned data is cached for ttl minutes.

Parameter Types

Parameters from Shesmu will be converted to Mongo’s BSON format.

The following formats can be converted easily:

	boolean

	date

	float

	integer

	path (written as a string)

	string

There are also a few complex conversions.

A list can be made as follows:

{
 "is": "list",
 "of": ...
}

An optional type can be made as follows:

{
 "is": "optional",
 "of": ...
}

If the optional is empty, null will be sent to Mongo.

An object type can be made as follows:

{
 "is": "object",
 "of": {
 "field_name1:": ...,
 "field_name2:": ...,
 "field_nameN:": ...
 }
}

Return Types

Return types specify what kind of data will be returned from Mongo and how to
convert it to a format Shesmu can return to the olive. Mongo has certain rules
that mean that not all types can be top-level.

The following formats are converted easily:

	boolean

	date

	float

	integer

	path (converted from a string)

	string

None of these can be top level.

A list can be made as follows:

{
 "is": "list",
 "of": ...
}

The type inside a list must be top-level. The list itself is not top level.

An optional type can be made as follows:

{
 "is": "optional",
 "of": ...
}

If null is returned in any field not marked as optional, an exception will
occur. This type cannot be top level.

An object type can be made as follows:

{
 "is": "object",
 "of": {
 "field_name1:": ...,
 "field_name2:": ...,
 "field_nameN:": ...
 }
}

An object type can be top-level.

An unwrap type works a bit like an object with only one field and discards the
intermediate object. It is made as follows:

{
 "is": "unwrap",
 "name": "fieldname",
 "of": ...
}

A unwrap can be top-level.

The special type "keyvalue" will convert an object to a list of key-value
tuples. The object’s values are converted to strings in a Mongo-defined format.
A key-value type can be top-level.

 Nabu

Nabu

Nabu [https://github.com/oicr-gsi/nabu] is a web application which tracks the QC
status of files.
The Nabu plugin for Shesmu can set Nabu up as a Shesmu input source.

The Nabu API matches Shemsu’s remote JSON source, so myserver.nabu-remote can be set up as follows:

{
 "url": "http://myserver:3000/fileqcs-only",
 "ttl":30
}

 Pinery Plugin

Pinery Plugin

Pinery [http://github.com/oicr-gsi/pinery] is a web service application that
provides generalized LIMS (Laboratory Information Management System) access for information about samples.

Deploying this plugin requires the gsi-common plugin be deployed as well.

The Pinery plugin provides three input formats:

	pinery_ius contains lane and sequenced sample information, and excludes
skipped lanes and samples

	pinery_ius_include_skipped contains lane and sequenced sample information, including
skipped lanes and samples

	pinery_projects provides the projects information

To configure a Pinery source, create a JSON file ending in .pinery as follows:

{
 "clinicalPipelines": ["Clinical", "Accredited Pipeline"],
 "provider": "foo-v2",
 "shortProvider": "foo",
 "url": "http://pinery:8080/",
 "version": 2
}

where provider is an arbitrary string that will be baked into the
provider field for pinery_ius and pinery_ius_include_skipped. shortProvider is
similar, but will be used in external_key. url is the address of the Pinery
server and version provides the Pinery data model version.

For each configuration, the names of all and active projects are also available
as constants.

There are functions and constants that separate out clinical projects. If "clinicalPipelines" is
set to an array, then any pipeline listed will be considered clinical. If it is null, then the
legacy behaviour is enabled where the pipeline Clinical or any pipeline starting with Accredited
will be considered clinical.

 Prometheus Alert Manager Plugin

Prometheus Alert Manager Plugin

The Prometheus Alert Manager [https://github.com/prometheus/alertmanager] can
be used to throttle services using AutoInhibit alert and can be the target
for Alert olives.

To configure the server, create a file ending in .alertman as follows:

{
 "alertmanager": "http://alertmanager:9093",
 "environment": "production"
 "labels": ["job", "scope"]
}

The plugin will check Alert Manager and block any alerts firing of the form
AutoInhibit{environment="production"} or
AutoInhibit{environment="production",_y_="x"} where x is the name of
the service used by an olive or action and y is one of labels, in this
case, job or scope. If labels is not supplied, job is assumed. This
allows dynamic throttling of Shesmu workload based on the services required.

Additionally, an Alert olives’ output is pushed to Alert Manager with the
additional label environment="production".

Here are recommended rules for monitoring Shesmu’s state:

groups:
- name: shesmu.rules
 rules:
 - record: shesmu_incomplete_action_count
 expr: sum(shesmu_action_state_count{state!~"SUCCEEDED|ZOMBIE"}) by (state)
 - record: shesmu_action_perform_time:rate30m
 expr: rate(shesmu_action_perform_time_bucket[30m])
 - alert: BadSource
 expr: max_over_time(shesmu_source_valid[5m]) == 0 and on(instance) up > 600
 annotations:
 description: Shesmu {{$labels.instance}} has failed to compile {{$labels.filename}}.
 The source file is probably wrong.
 summary: Unable to compile {{$labels.filename}}

To check for actions being in a state for too long, use these rules, adjusting the timeouts as desired:

 - alert: StuckActions
 expr: time() - shesmu_action_oldest_time{state=~"QUEUED|THROTTLED|WAITING"} > 2 * 86400
 labels:
 severity: pipeline
 annotations:
 description: "A {{$labels.type}} action has been {{$labels.state}} on {{$labels.instance}} for a while now."
 summary: "{{$labels.type}} actions {{$labels.state}} too long on {{$labels.instance}}"
 - alert: StuckActions
 expr: time() - shesmu_action_oldest_time{state="INFLIGHT"} > 5 * 86400
 labels:
 severity: pipeline
 annotations:
 description: "A {{$labels.type}} action has been {{$labels.state}} on {{$labels.instance}} for a while now."
 summary: "{{$labels.type}} actions {{$labels.state}} too long on {{$labels.instance}}"

To check for olives not running frequently enough or hitting their timeouts, try:

 - alert: StuckOlive
 expr: time() - shesmu_run_last_run > 7200 and up > 600
 annotations:
 description: All the olives are taking much too long to run on {{$labels.instance}}.
 summary: All olives stuck on {{$labels.instance}}
 - alert: StuckOlive
 expr: shesmu_run_overtime > 0
 annotations:
 description: The olives from {{$labels.name}} are taking much too long to run on {{$labels.instance}}.
 summary: Olives in {{$labels.name}} stuck on {{$labels.instance}}

If using the SSH refiller, it can be useful to watch for failures:

 - alert: RefillFailure
 expr: min_over_time(shesmu_sftp_refill_exit_status[1h]) > 0
 annotations:
 description: SSH refill processor {{$labels.name}} on {{$labels.instance}} is exiting non-zero.
 summary: Failed to refill {{$labels.name}} on {{$labels.instance}}.

 Rate Limit Throttling Plugin

Rate Limit Throttling Plugin

This plugin allows limiting the rate of contacting a service using a token
bucket [https://en.wikipedia.org/wiki/Token_bucket]. To create a bucket that
throttles service, create a file service.ratelimit as follows:

{
 "capacity": 1000,
 "delay": 50
}

where capacity is the maximum number of tokens that can be held in the bucket
and delay is the number of milliseconds to generate a new token.

 Runscanner Plugin

Runscanner Plugin

Runscanner [https://github.com/oicr-gsi/runscanner] is an application which scans
directories for data from DNA & RNA sequencing runs.
The Runscanner plugin for Shesmu can set up Runscanner as a Shesmu input source.

Create a JSON file ending in .runscanner as follows:

{
 "url": "http://runscanner:8080"
}

This will provide functions to get information about runs given the run name.

 SFTP Plugin

SFTP Plugin

The SFTP plugin allows Shesmu to get metadata from and check if files exist on
a remote file system.

To configure an SFTP server, create a file ending in .sftp as follows:

{
 "host": "myserver.local",
 "port": 22,
 "user": "myuser",
 "jsonSources": [],
 "listCommand": null,
 "fileRoots": [],
 "fileRootsTtl": null,
 "functions": {},
 "refillers": {}
}

Shesmu uses passwordless public key authentication on the remote server. An
unencrypted private key must be provided in $HOME/.ssh/id_rsa. In this
example, from the user that Shesmu runs as, ssh -p 22 myuser@myserver.local
must work without any user interaction.

This will provide several functions to access the existence, size, and
modification time of remote files. It will also provide an action to create
symlinks on the remote system.

Functions

A remote program can be used to provide functions to olives. To create one add
an entry to the "functions" section as follows:

"some_function": {
 "command": "/usr/local/bin/some_function",
 "parameters": [
 "s",
 "i"
],
 "returns": "b",
 "ttl": 60
}

This will provide some_function(string, integer) to olives. When this
function is called, it will run /usr/local/bin/some_function and write a JSON
array with the parameters to standard input. It will then wait to read standard
output which should contain only a JSON value (a Boolean in this case); that
is, it should write true or false to standard output.

As a fun example, if cat is the command used, all the arguments are returned
as a tuple:

"to_tuple": {
 "command": "cat",
 "parameters": [
 "s",
 "i"
],
 "returns": "t2si"
}

The parameter and return types are JSON-enhanced descriptors. See types
in the language description for details.

Refillers

A remote server can provide programs that will ingest data from a Refill
olive. To create one, add an entry in the "refillers" section as follows:

"example": {
 "command": "/opt/refill/bin/example",
 "parameters": {
 "count": "i",
 "value": "s"
 }
}

This will create example as a refiller available to olives. It will take
parameters as defined in the "parameters" block; the value of each parameter
is a JSON-enhanced Shesmu type descriptors (see types in the language
description for details). When the olive is ready,
Shesmu will compute an order-independent hash from the data. Then, over SSH,
"command" will be run with the hash (as a hexadecimal string) after it.

This program can then decide if the hash matches the last version it has
consumed. If so, it should print: OK and exit 0. If it has stale data, it
should print UPDATE and it will then receive a JSON array of objects
containing of all the data (in arbitrary order) via standard input.

It can then process the data and should return 0 if the processing was
successful; non-zero otherwise.

If the program exits non-zero, Shesmu will retry with the same data until
success or the data is updated.

As an example, this shell script read the data and places it in a file (in the
same directory):

#!/bin/sh
cd $(dirname $0)
if [-f current_hash] && ["${1}" = "$(cat current_hash)"]; then
 echo OK
 exit 0
fi
echo UPDATE
cat >current_data
echo "${1}" >current_hash

A more sophisticated version of this script is provided as
shesmu-json-refiller if it suits your needs.

JSON Sources

It is possible to extract data over SSH by remotely executing a command that
streams this data in JSON format to standard output. This data should be in the
same format as /input/format.

To create a source, add an object as follows in the "jsonSources" array:

{
 "command": "command_to_produce_data",
 "format": "cerberus_fp",
 "ttl": 60
}

This will run the command specified in "command" to generate the data. Data
will be cached for the number of minutes specified by "ttl". The "format"
property gives the name of the format. If the name is unknown, this source will
be ignored.

File Roots

It is possible to gather file information in the unix_file format from a
remote file system via SSH. "fileRoots" list the paths to scan.

"fileRootsTtl" sets the number of minutes to cache the results. If null, a
default value of 60 minutes is used.

Shesmu tries to use GNU findutils to explore the remote directory. This is
convenient because it is standard with Linux. However, if file have names which
are not allowed in JSON strings, it falls apart rather quickly. If this is the
case, use the JSON directory listing tool to ensure the
output is always correctly encoded. Install it on the target system and then
set "listCommand" to the path to the program or just "json-dir-list" if
it’s installed into a location on the PATH.

 Tab-delimited File Plugin

Tab-delimited File Plugin

The tab-delimited file plugin provides several different features:

	table-based lookup functions

	string sets

	equivalence tables

	TSV dumper

	maintenance schedules

Table-based Lookup Functions

These are Shesmu functions create from TSV dictionaries. A file ending
.lookup must contain tab-separated values. A .commalookup is the same but
uses comma-separated values instead of tab-separated.

The first row defines the types of the columns using a Shesmu type name
(string, boolean, integer, path, date). Each subsequent row contains
a value for each column, or * for a wild card match. The final column, which
cannot be a wild card, is the result value.

For example, suppose we want to create a way to assign users responsibility for projects. Create a person_for_project.lookup:

 string	string
 worlddomination	bill
 weathermachine	linda
 deathray	margaret
 *	phil

This will create a function in Shesmu that can be used as
person_for_project(project_name) to get the assignee. The * row will give
any unassigned project to phil. If no catch-all row is provided, a default
value is returned (the empty string, false, 0, the current directory, or the
epoch) depending on the type.

Equivalence Tables

In some cases, it is useful to decide that two strings are equivalent. This
plugin takes a table, ending in .equiv, and each line is considered to be a
set of mutually equivalent values, separated by tabs.

For a file such as this:

A B C
D E

a function is_same will be available to the olive and is_same("A", "B")
will be true, but is_same("A", "E") will be false. A string is always the
same as itself, even if not listed in the table.

String Sets

A string set is a file, ending in .set that will be available to olives as a
set of strings where each string is a line in a file.

String Expansions

A string expansion is a TSV file, ending in .strexpand, that substitutes a
string to multiple values or returns the input as a list. This was designed to
cope with 10X barcodes: 10X symbolic barcodes need to be replaced by their set
of real barcodes, but real barcodes should remain.

SI-GA-A1 GGTTTACT CTAAACGG TCGGCGTC AACCGTAA
SI-GA-A2 TTTCATGA ACGTCCCT CGCATGTG GAAGGAAC
SI-GA-A3 CAGTACTG AGTAGTCT GCAGTAGA TTCCCGAC
SI-GA-A4 TATGATTC CCCACAGT ATGCTGAA GGATGCCG
SI-GA-A5 CTAGGTGA TCGTTCAG AGCCAATT GATACGCC
SI-GA-A6 CGCTATGT GCTGTCCA TTGAGATC AAACCGAG
SI-GA-A7 ACAGAGGT TATAGTTG CGGTCCCA GTCCTAAC
SI-GA-A8 GCATCTCC TGTAAGGT CTGCGATG AACGTCAA
SI-GA-A9 TCTTAAAG CGAGGCTC GTCCTTCT AAGACGGA
SI-GA-A10 GAAACCCT TTTCTGTC CCGTGTGA AGCGAAAG
SI-GA-A11 GTCCGGTC AAGATCAT CCTGAAGG TGATCTCA
SI-GA-A12 AGTGGAAC GTCTCCTT TCACATCA CAGATGGG

If this is placed in a file named expand_chromium.strexpand, then an olive
can do expand_chromium("SI-GA-A1") to get back ["GGTTTACT", "CTAAACGG", "TCGGCGTC", "AACCGTAA"] while expand_chromium("ATTGCC") will result in
["ATTGCC"].

If a line has only one column (i.e., only a key), it will return an empty
set. Blank lines and lines starting with # are ignored.

TSV Dumper

This allows writing values to a tab-separated file using a Dump clause. For
set up, create a file ending in .tsvdump as follows:

{
 "log1" : "/tmp/log1.tsv"
}

Now, in the olive, Dump x, y, z To log1 will place the values of x, y,
and z into /tmp/log1.tsv. The file will be truncated with each olive pass.

Maintenance Schedules

Maintenance schedules allow throttling Shesmu olives and actions during specific blackout periods. This is meant to be used to have Shesmu stop creating work during and leading up to planned downtimes.

To create a schedule, make a tab-separated file ending with .schedule with
two columns, the start and end times of each maintenance window:

2018-04-28T01:00:00Z	2018-04-30T08:00:00Z
2018-09-14T21:00:00Z	2018-09-17T13:00:00Z
2019-04-26T21:00:00Z	2019-04-29T13:00:00Z
2019-07-12T21:00:00Z	2019-07-15T15:00:00Z
2019-09-13T21:00:00Z	2019-09-16T13:00:00Z
2019-12-06T22:00:00Z	2019-12-09T14:00:00Z

The name of the file will be the service name that will be inhibited. If called
maintenance.schedule all services will be inhibited.

The times must be formatted in a way that can be parsed by
DateTimeFormatter.ISO_DATE_TIME [https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html#ISO_DATE_TIME].
If that sounds unappealing, there’s a graphical maintenance schedule
editor.

Ranges

Ranges return a particular string value for a time range.

To create a range file, make a tab-separate file ending with .range with two
columns, the start of that range and the value to return:

2018-04-28T01:00:00Z v1
2018-04-30T08:00:00Z v2
2018-09-14T21:00:00Z v2.1
2018-09-17T13:00:00Z v2.5

This will create a function available to olives that will return the value
associated with the previous date. So, 2018-09-15 would return "v2.1".

Complex JSON Objects

Not really tab-separated, but here we are. This is useful for creating a
structure like a lookup, but with a complex object as a return value. In a file
ending in .jsonconfig, create a structure as follows:

{
 "types": {
 "foo": "s",
 "bar": "qi",
 "quux" "i"
 },
 "defaults": { "quux": 9000 },
 "missingUsesDefaults": false,
 "values": {
 "A": { "foo": "a thing", "bar": 3, "quux": 12 },
 "B": { "foo": "a diferent thing", "bar": null }
 }
}

This will create a function that will take a single string as an argument and
return the matching object in "values", or the empty optional if none
matches. The "defaults" object can provide values that are used if not
provided in the individual "values" objects.

Normally, if a key is not present in "values", the function will return an
empty optional. If "missingUsesDefaults" is true, then, the values in
"defaults" will be provided instead. This requires that all values in the
"types" have a default value (or are optional).

The types are JSON-enhanced descriptors. See types in the language
description for details.

It is also possible to use data from a remote server using a .remotejsonconfig:

{
 "types": {
 "foo": "s",
 "bar": "qi",
 "quux" "i"
 },
 "defaults": { "quux": 9000 },
 "missingUsesDefaults": false,
 "ttl": 10,
 "url": "http://example.com/data"
}

In this case, no "values" is provided. Instead, it will be fetched from "url" and be refreshed
every "ttl" minutes. All other configuration is the same as .jsonconfig.

Refillable Dictionary

This is a mechanism for inter-olive communication. It allows one olive to fill
a dictionary and others to read values out of it. In a file ending in
.redict, create a structure as follows:

{
 "key": "s",
 "value": "i"
}

This will create a dictionary constant and a refiller with the same name as the
file. The type of the dictionary is set by the "key" and "value" properties
in the configuration file using Shesmu type descriptors. In this case, the
dictionary will be string -> integer. The refiller can set the dictionary
with two parameters: key and value. When the refiller runs, it will create
a new dictionary with all the keys and values provided. If there are duplicate
keys, one is selected arbitrarily. The dictionary is updated atomically, so
olives reading the dictionary will have the complete set of data; however, it
may be updated during an olive’s run, so multiple accesses can produce
different results.

The types are JSON-enhanced descriptors. See types in the language
description for details.

 Vidarr Plugin

Vidarr Plugin

Vidarr [https://github.com/oicr-gsi/vidarr] is a bioinformatics analysis
provenance system.

To integrate Shesmu with a Vidarr server, create a configuration file ending in
.vidarr as follows:

{
 "url": "http://vidarr:8000"
}

This will populate Shesmu with target + workflow comb